Как робот – Ой!

Содержание

Как сделать первые шаги в робототехнике? / Mail.ru Group corporate blog / Habr

Роботизация и автоматизация становятся всё востребованнее, и многим хотелось бы научиться создавать подобные системы и устройства. Но с чего начать, как освоить азы? Мы сделали для вас небольшую подборку русскоязычных и англоязычных YouTube-каналов с учебными материалами и методическими пособиями по робототехнике.



Канал ведет инженер, который рассказывает о своем опыте в конструировании из подручных материалов разных устройств, как правило автоматизированных. Речь идет об электронике, робототехнике, инструментах и прикладных экспериментах. Довольно интересный и доступно изложенный материал, из которого можно почерпнуть для себя что-то новое.


Канал довольно популярного магазина «Амперка». Посвящен электронике и робототехнике. Здесь рассказывается о платформах Arduino, Raspberry Pi и Iskra JS, с помощью которых можно создавать роботов и автоматизированные системы (типа «умный дом») даже с минимальным набором знаний.


Интересный канал, позволяющий получить множество знаний в разных областях от ведущих вузов. В том числе содержит вводные материалы лекций по робототехнике, к которым можно получить доступ в рамках проекта «Универсариум».


На канале представлены доступные уроки по робототехнике, программированию, а также интересные материалы и освещение событий, связанных с роботами. Автор — кандидат физико-математических наук и тренер сборной России по робототехнике.


Содержит учебные материалы по робототехнике для начинающих. Создание робота своими руками с нуля. От простейших экземпляров до вычислительных машин на процессорах и микроконтроллерах. Каждый материал содержит описание робота, инструкция по его созданию и список необходимых элементов.


На канале вы найдёте обучающие уроки по робототехнике, в частности, по программированию EV3. Первый сезон лекций выложен полностью. Материал подан доступно для начинающих. Планируется 3 сезона.


На канале есть множество интересной и полезной информации по созданию роботов, материалы с места событий, выставок и чемпионатов, а также обучающие материалы, в том числе практические задания к курсу по робототехнике.


Ряд довольно интересных обучающих и обозревательных материалов по робототехнике от сотрудника Оренбургского президентского кадетского колледжа. Здесь вы можете получить начальные знания, которые пригодятся любому человеку, интересующемуся робототехникой.


Уроки по робототехнике для начинающих, и не только для детей. Пошаговые доступные инструкции по сборке роботов из LEGO, на основе Arduino и т.д. Содержит также много других интересных материалов по теме.


Обучающие материалы по робототехнике, а также видео и новинки из этой области. Автор имеет несколько наград и патентов в этой сфере. Преподает свой собственный курс «Как стать инженером робототехники» для студентов и аспирантов.


Очень интересный курс лекций по робототехнике — не для новичков. Охватывает многие интересные аспекты и содержит множество материалов в виде лекций из этой и смежных областей.


Серия обучающих уроков по платформе Arduino. Довольно интересное и несложное изложение материала. Уроки подходят для новичков.


Серия обучающих материалов по Arduino и базовому программированию для новичков. Поможет делающим первые шаги познакомиться с платформой и обучиться азам.


Обучающие уроки по электронике, робототехнике на основе Arduino и многое другое. Содержащие интересные материалы из категории «сделай сам».


Сборник лекций с говорящим названием от Стэндфордского университета. Не для начинающих.

* * *

Хотя сегодня многие интересуются робототехникой, однако полезных обучающих видео в сети на удивление немного. Так что делитесь в комментариях ссылками для дополнения подборки.

habr.com

Роботы в человеческом обществе / Unet corporate blog / Habr

Роботы – это автоматизированные машины, которые способны выполнять функции человека при взаимодействии с окружающим миром. О них люди мечтали еще с древних времен, и вот сейчас эти механизмы входят в наше общество с огромной скоростью. Основное их предназначение – сделать нашу жизнь более комфортной, улучшить условия труда, освободить «руки» от сложных рабочих процессов и увеличить производительность.

Роботы чаще всего встречаются в промышленности, где с их помощью удалось полностью автоматизировать большинство производственных задач. Но, кроме того, умные машины все больше задействуются в военной отрасли, медицине, сфере обслуживания и потребительском секторе.


И если ранее они выполняли только повторяющиеся рутинные задачи по программе, то сейчас их уровень достиг новых вершин, позволяя взаимодействовать с нами, общаясь на своем машинном языке, понимать наши жесты и эмоции. Кроме того, используя специализированные площадки уже сейчас каждый желающий имеет возможность влиять на индустрию, создавать свои программы и добавлять новые функции к роботам. Таким образом, развиваясь от простых вспомогательных механизмов, роботы имеют все шансы влиться в наше общество и стать нашими друзьями.

История развития


Отметим несколько интересных фактов из истории развития роботов. Первые признаки робототехники наблюдались еще с античности, когда люди мечтали о гигантских бронзовых машинах, которые смогли бы помочь им сражаться с врагами и завоевывать новые земли. Есть свидетельства, что прообразами нынешних роботов были механические фигуры, найденные в записках арабского изобретателя Аль-Джазари примерно в 1136 – 1206 годах.

Первым, кто представил чертеж человекоподобного робота, был великий Леонардо да Винчи примерно в 1495 году. Чертеж представлял модель механического рыцаря, который может сидеть, стоять, двигать руками, головой и, возможно, захватывать предметы. Но так и неизвестно, пытался ли да Винчи воплотить в реальность этот механизм.

В 16-17 веке в Западной Европе инженеры начали конструировать автоматоны — заводные механизмы наподобие человека, которые могли выполнять довольно сложные действия. Самый известный из них – робот «испанский монах», который был изобретен примерно в 1560 году механиком Хуанело Турриано для императора Карла V. Автоматон был около 40 см в высоту, способный ходить, бить себя в грудь рукой, кивать головой и даже преподносить деревянный крест к губам.

Более заметный прогресс в робототехнике наблюдался в 18 веке. К примеру, в 1738 году французский инженер Жак де Вокансон собрал первого в мире андроида, способного играть на флейте.

С 19 века изобретения стали приобретать более практический смысл. В 1898 году известный физик Никола Тесла представил общественности миниатюрное радиоуправляемое судно. Первоначально это изобретение казалось немного причудливым. Но в дальнейшем его идеи стали воплощаться в жизнь и приобрели широкое применение.

1921 год – механизмы, наконец, обрели четкий термин «робот» благодаря чешскому писателю Карлу Чапеку и его пьесе под названием «Россумские Универсальные Роботы». Примечательно, что Чапек назвал этим словом не машины, а живых людей, создаваемых на специальной фабрике. Но термин закрепился в науке и дал жизнь всем автоматизированным устройствам.

В середине 20 века, в частности, в 1950-ых стали разрабатываться механические манипуляторы для взаимодействия с радиоактивными материалами. Эти роботы копировали движения рук человека, находящегося в безопасном месте.

В 1968 году японской компанией Kawasaki Heavy Industries, Ltd был произведен первый промышленный робот. С тех пор Япония начала вовсю стремиться стать мировой столицей робототехники, и ей это удалось. Несмотря на то, что роботы изначально разрабатывались в США, они импортировались в Японию в малых количествах, где инженеры изучали их и применяли в производстве.

Коммерческое распространение роботов началось с 1980-ых годов. Технический прогресс двигался в направлении совершенствования систем управления. Такие компании как Unimate, Hitachi KUKA, Westinghouse, FANUC развивали системы датчиков для своих роботов, делая их более чувствительными к задачам, которые они выполняют.

В конце 90-ых – начале 2000-ых начался активный рост и развитие отрасли с использованием новых контроллеров, языков программирования, запуска первых роботов в космос и возникновением машин, создающих роботов.

В это время также появились новые человекоподобные роботы, такие как канадский Aiko, имитирующий человеческие чувства (осязание, слух, речь, зрение), ASIMO – гуманоид японской фирмы Honda, робот-собака AIBO, созданная компанией Sony и другие.

  • В 2005 году вышел робот-гуманоид RoboThespian британской компании Engineered Arts. Пройдя несколько модификаций, он стал наилучшей платформой для общения и развлечений. В этом же году мир увидел BigDog – боевой четвероногий робот, созданный Boston Dynamics.
  • В 2008 году вышел гуманоидный дружелюбный робот NAO, предназначенный для работы в домах, университетах и лабораториях и предлагающий помощь в научных исследованиях и образовании.
  • В 2011 году на МКС был отправлен первый робот-космонавт НАСА Robonaut-2.

Последние пять лет наблюдается широкий всплеск робототехники во всех отраслях – от продвинутых манипуляторов до гуманоидов, которые выглядят как живые люди, имеют широкий спектр эмоций и полностью копируют нашу мимику.

Препятствия


Несмотря на всю полезность технологии, роботы пока не используются повсеместно, как это зачастую нам показывают во многих фантастических фильмах. Это связано с рядом факторов. Во-первых, для этого просто не готова наша инфраструктура: дороги, улицы, здания и наши дома. Роботы воспринимают мир иначе и пока неспособны даже отличить стул от стола, чего уж говорить о постоянно меняющихся условиях нашей жизни.

Во-вторых, не готова правовая система государств: использование роботов требует соответствующих законов, чтобы они «мирно» сосуществовали с нами. В конце концов, если не сами роботы, то кто-то другой должен нести ответственность за их действия.

В-третьих, некоторые исследователи утверждают, что нам необходимо опасаться этих механических рабочих, так как с дальнейшим активным развитием искусственного интеллекта они смогут в буквальном смысле поработить нас. Эти опасения слишком сильно сдерживают исследование и распространения робототехники.

Конечно, не стоит отрицать, что есть масса глобальных рисков, которые могут возникнуть при использовании сверхчеловеческого разума, не запрограммированного на безусловную лояльность к человеку. Но будущее пока что в наших руках, и мы в силах его изменить, тем более, что сейчас программирование роботов становится все более открытым и доступным для общественности. Нужно только научиться правильно пользоваться этими возможностями.

Роботы сегодня


Как уже упоминалось, наибольшей отраслью, где используется робототехника, является промышленность, в частности, автомобилестроение. Манипуляторы, работающие на заводах, варьируются от размеров и функциональности в зависимости от типа выполняющей задачи – сборочные, сварочные, режущие, красящие. Наряду с ними на производстве можно встретить разгрузочно-погрузочных роботов, упаковщиков, сортировщиков, формовщиков и прочие механизмы, заменяющие человека в рутинных повторяющихся задачах. Компаниями-лидерами в промышленной автоматизации являются – KUKA (Германия), Fanuc (Япония), Kawasaki (Япония), ABB (Швейцария), Denso (Япония) и другие.

Наряду с этим новых масштабов приобретает рынок совместных роботов, которые могут работать с людьми на одной производственной линии, не причиняя им вреда. Это манипуляторы компании Universal Robots, а также промышленные роботы нового поколения Baxter и Sawyer от Rethink Robotics.

В последние годы весь мир внимательно следит за разработкой автомобилей с автономным управлением, которые будут перевозить людей без их участия в процессе. Сейчас ближе всего к беспилотным машинам находится служба такси Uber. Но прогресс в разработке технологии регулярно демонстрируют такие производители, как Ford, Mercedes, Toyota, BMW и Tesla.

Роботы также активно используются в сельском хозяйстве. Зачастую, это радиоуправляемые тракторы и плуги, но все более широкого применения приобретают беспилотные летательные аппараты, которые аграрии используют для картографирования своих угодий и регулярного осмотра культур.

А какие роботы служат в быту? Безусловно, первое место здесь принадлежит роботам-пылесосам, которые стали незаменимыми помощниками по уборке в доме. Лидером среди производителей этих устройств является американская фирма iRobot и её пылесосы Roomba. Последние модели производителя отличаются улучшенной навигацией и сопряжением со смартфоном. Данное дополнение открывает новые возможности для обычных пользователей, которые могут через специальные приложения добавлять роботам больше функций.

Для ухода за газонами служат автоматизированные газонокосилки, которые оснащены массивом датчиков для безопасной езды и стрижки травы на больших площадях. За бассейнами ухаживают небольшие колесные роботы, которые самостоятельно передвигаются по дну водоема, чистят стены, ступени и фильтруют воду.

Кроме того, растущего числа набирают беспилотные летательные аппараты, которые давно перешли от исключительно военного применения к гражданскому. Дроны используются для самых различных задач – от развлечения до наблюдения и профессиональной видеосъемки. Лидерство в этом секторе за китайским производителем DJI. Их последний аппарат Spark считается самым совершенным селфи-дроном, запускаемым и управляемым жестами.

Все большего распространения также приобретают системы умного дома. Если раньше такая «автоматизация» заключалась в хлопанье ладошами чтобы включить свет, то сейчас человеку вообще не нужно ни за чем следить – вся власть в руках электронного управдома, роботизированного центра управления, которому подчинены все домашние устройства от систем безопасности и освещения до кофеварки и стиральной машины.

Более того, пользователь может сам добавлять функции в систему, которые ему нужны. К примеру, ему необходимо настроить работу стиральной машины на время, когда счетчики работают в режиме «ночь», чтобы экономить расходы на электроэнергию. Для этого нужно сконструировать соответствующее приложение для смартфона, который поможет оставаться на связи с домом и управлять домашней автоматизацией практически с любого места.

Вспомогательным гаджетом может выступать эхо-колонка (Amazon Echo, Google Home и другие), позволяющая с помощью голосовых команд управлять всей техникой в доме. Или роботы-помощники, которые выступают в роли органайзера, будильника, мультимедиа проигрывателя. Будучи подключенными к Интернету, они сообщают о погоде, рассказывают новости, предоставляют информацию о пробках в вашем городе и прочее. А благодаря открытому доступу к программированию, из них можно сделать отличных помощников для учебы детей, развлечения пожилых и даже игрушек для домашних животных.

Как видите, роботы уже вошли в нашу жизнь в виде разнообразных умных гаджетов, бытовых приборов и смарт-систем. Однако до идеального образа, созданного человеческим воображением, умным машинам еще очень далеко. Все что они могут – выполнять запрограммированные человеком команды. Но инженеры упорно стремятся к тому, чтобы сделать машины по-настоящему дееспособными, а взаимодействие с ними более легким, естественным и главное – доступным обычному человеку.

Прогнозы на будущее


С каждым годом эксперты и аналитики представляют нам новый мир, где на смену вере в сверхъестественное придет вера в науку и технику. Мир, в котором можно учиться и работать, не выходя из дома. Интернет размоет границы между странами, а роботы будут делать за нас практически все.

Если верить статистическим данным организации Tractica, число потребляемых человечеством роботов достигнет 31,2 млн единиц по всему миру к 2020 году. При этом, лидерство на рынке займут бытовые роботы, обогнав промышленных и военных.

Ученые прогнозируют, что уже к 2018 году Интернет вещей будет насчитывать около 6 млрд подключенных устройств. Эти устройства будут обращаться к сервисам и данным в Сети, что позволит людям строить новые бизнес-планы для обслуживания этих подключенных устройств. К 2020 году 40% взаимодействий с мобильными устройствами будут осуществляться через «умных» агентов. Этот прогноз основан на том, что наш мир движется к эпохе приложений, в которой такие сервисы, как Amazon Alexa, Microsoft Cortana и Apple Siri будут играть роль универсального интерфейса для взаимодействия человека с устройствами.

Технический директор Google Рэй Курцвейл в своих прогнозах по поводу развития робототехники и информационных технологий предполагает, что персональные роботы, способные на полностью автономные сложные действия, станут такой же привычной вещью, как холодильники или стиральные машины уже в 2027 году. А беспилотные автомобили заполнят полностью дороги в 2033 году.

Какими бы утешительными или наоборот пугающими не были прогнозы, перед учеными и инженерами стоит еще ряд проблем. Основная из них – жесткие ограничения правительств государств в принятии робототехники, которые сопровождаются нехваткой стандартов качества и безопасности продукции.

Еще одна проблема, которую нужно решить перед тем, как роботы будут массово внедрены в жизнь – это доступность программного и аппаратного обеспечения. Дороговизна материалов и оборудования для производства не позволяет производителям снижать цены на своих роботов. К примеру, очень дорого стоят такие медицинские устройства как экзоскелеты, которые помогли бы многим людям с ограниченными возможностями нормально жить и передвигаться.

Пока нам доступны только роботы-уборщики, дроны и персональные помощники, но радует тот факт, что вскоре у нас будет возможность делать эти устройства более функциональными, не завися от производителей.

Плюс ко всему, обычные люди пока не готовы морально к принятию роботов, похожих на них. Это связано в первую очередь с нехваткой информации о том, каких достижений добился научно-технический прогресс. Вдобавок к этому у людей сложилось ошибочное мнение о роботах, которые были неоднократно представлены в научно-фантастических фильмах. Некоторые до сих пор воспринимают слово «робот» как что-то вроде «Терминатора» или дроида из «Звездных войн». А ведь на самом деле, сейчас собрать и запрограммировать робота может даже ребенок.

Нужно расширять границы знаний, больше читать и смотреть интересные видео об устройствах из реального мира, которые могут иметь большое значение в нашей повседневной жизни.

Роботы в концепции IoT


Робототехника также затрагивает область столь нашумевшего сейчас направления – Интернета вещей. Это единая сеть, которая соединяет окружающие объекты реального мира с виртуальными.

Как это происходит: сенсоры вводятся во все подключенные к сети устройства, что позволяет им взаимодействовать с внешним миром. К примеру, «умные» шторы, которые сами регулируют свою прозрачность в зависимости от уровней внешнего и внутреннего освещения. Или холодильник, который самостоятельно регулирует температуру в разных отсеках, основываясь на том, какие продукты вы берете чаще всего. Таким образом, техника начинает подстраиваться под ежедневную жизнь пользователя и управляться исходя из его потребностей.

Интернет вещей – это не просто объединение различных приборов и датчиков через проводные и беспроводные каналы. Это более тесная интеграция реального и виртуального миров, в которых производится общение между людьми и устройствами.

Ученые уверены, что в будущем эти системы станут активными участниками информационных и социальных процессов, а также бизнеса, где они смогут взаимодействовать между собой, обмениваться информацией об окружающей обстановке, реагировать и влиять на внешние процессы без вмешательства человека.

На этом фоне появляется концепция Social IoT, которая предполагает объединение людей, роботов и устройств в одно информационно-правовое поле. Но что же нужно для осуществления этой концепции? Дело в том, что самой главной проблемой в данной области на сегодняшний день является отсутствие государственных стандартов, что затрудняет возможность применения предлагаемых на рынке решений, а также сдерживает появление новых.

Но кроме стандартов безопасности, необходимо создать доступные механизмы взаимодействия между роботами и людьми для управления и контроля. Это даст возможность полноценно управлять не одним роботом, а безопасно впустить в наше общество иную цивилизацию машин и жить в гармонии с ними.

Такие пользовательские программные сервисы, к счастью, скоро появятся и будут доступными, позволяя даже новичку добавлять к своему роботу новые интересные задачи. Хотите, чтобы робот-пылесос пел ваши любимые песни? Почему бы и нет. Для этого достаточно будет воспользоваться набором готовых базовых инструментов.

С помощью API программы каждый желающий сможет быстро создавать и комбинировать множество своих вариантов решений. При этом не нужно будет тратить свои ресурсы на создание базовых инструментов, а только фокусироваться на основной задаче.

Уже в ближайшем будущем вы сможете подключить программу, выбрать готовое приложение и сделать свой робот-пылесос говорящим и поющим. А если оснастить его видеокамерой, он сможет выступать в роли охранника. Но самое главное, что с помощью большого набора программных инструментов у вас появится возможность писать собственные уникальные приложения, чтобы добавлять бытовым роботам больше новых функций.

Стоит также отметить, что каждый отдельно взятый продукт стороннего разработчика на представленной базе будет иметь возможность привлекать к себе пользователей всей системы и распространять свой продукт. Таким образом, будет создана большая экосистема инструментов и возможностей, которые будут пользоваться ежедневно людьми со всего мира.

Заключение


В заключение стоит отметить, что по мере того как наш мир будет наполняться роботами, навыки общения с ними будут не менее полезны чем навыки общения с людьми. Мы видим, как современные технологии постепенно объединяют людей и умные машины в одну большую социально-аппаратную сеть. И это только начало сложного, но очень увлекательного путешествия в будущее.

habr.com

Как собрать робота своими руками за 6 часов и стать душой компании / Habr

Сейчас уже мало кто помнит, к сожалению, что в 2005 году были Chemical Brothers и у них был замечательный клип — Believe, где роботизированная рука гонялась по городу за героем видео.

Тогда у меня появилась мечта. Несбыточная на тот момент, т. к. ни малейшего понятия об электронике у меня не было. Но мне хотелось верить — believe. Прошло 10 лет, и буквально вчера мне удалось впервые собрать своего собственного робота-манипулятора, запустить его в работу, затем сломать, починить, и снова запустить в работу, а попутно найти друзей и обрести уверенность в собственных силах.

Внимание, под катом спойлеры!

Всё началось с этого набора (привет, Мастер Кит, и спасибо, что разрешили написать в вашем блоге!), который был почти сразу найден и выбран после этой статьи на Хабре. На сайте говорится, что собрать робота — под силу даже 8-летнему ребёнку — чем я хуже? Я точно так же только пробую свои силы.

Сначала была паранойя


Как истинный параноик, сразу выскажу опасения, которые у меня изначально были относительно конструктора. В моём детстве сперва были добротные советские конструкторы, потом рассыпающиеся в руках китайские игрушки… а потом детство кончилось:(

Поэтому из того, что осталось в памяти об игрушках, было:

  • Пластмасса будет ломаться и крошиться в руках?
  • Детали будут неплотно подходить друг к другу?
  • В наборе будут не все детали?
  • Собранная конструкция будет непрочной и недолговечной?

И, наконец, урок, который был вынесен из советских конструкторов:
  • Часть деталей придётся допиливать напильником
  • А части деталей просто не будет в наборе
  • И ещё часть будет изначально не работать, её придётся менять

Что я могу сказать сейчас: не зря в моем любимом клипе Believe главный герой видит страхи там, где их нет. Ни одно из опасений не оправдалось: деталей было ровно столько, сколько нужно, все они подходили друг к другу, на мой взгляд — идеально, что очень сильно поднимало настроение по ходу работы.

Детали конструктора не только отлично подходят друг к другу, но также продуман тот момент, что детали почти что невозможно перепутать. Правда, с немецкой педантичностью создатели отложили винтиков ровно столько сколько нужно, поэтому терять винтики по полу или путать «какой куда» при сборке робота нежелательно.

Технические характеристики:

Длина: 228 мм
Высота: 380 мм
Ширина: 160 мм
Вес в сборке: 658 гр.

Питание: 4 батарейки типа D
Вес поднимаемых предметов: до 100 гр
Подсветка: 1 светодиод
Тип управления: проводной дистанционный пульт
Примерное время сборки: 6 часов
Движение: 5 коллекторных моторов
Защита конструкции при движении: храповик

Подвижность:
Механизм захвата: 0-1,77»
Движение запястья: в пределах 120 градусов
Движение локтя: в пределах 300 градусов
Движение плеча: в пределах 180 градусов
Вращение на платформе: в пределах 270 градусов

Вам понадобятся:

  • удлинённые плоскогубцы (не получится обойтись без них)
  • боковые кусачки (можно заменить на нож для бумаги, ножницы)
  • крестовая отвёртка
  • 4 батарейки типа D

Важно! О мелких деталях


Кстати о «винтиках». Если вы сталкивались с подобной проблемой, и знаете, как сделать сборку ещё удобнее — добро пожаловать в комментарии. Пока что поделюсь своим опытом.

Одинаковые по функции, но разные по длине болты и шурупы достаточно чётко прописаны в инструкции, например, на средней фото внизу мы видим болты P11 и P13. А может P14 — ну, то есть, вот опять, я снова их путаю. =)

Различить их можно: в инструкции прописано, какой из них сколько миллиметров. Но, во-первых, не будешь же сидеть со штангенциркулем (особенно если тебе 8 лет и\или у тебя его попросту нет), а, во-вторых, различить их в итоге можно только, если положить рядом, что может не сразу прийти на ум (мне не пришло, хе-хе).

Поэтому заранее предупрежу, если надумаете собирать этого или похожего робота сами, вот вам подсказка:

  • либо заранее присмотритесь к крепёжным элементам;
  • либо купите себе побольше мелких винтов, саморезов и болтов, чтобы не париться.

Также, ни в коем случае не выбрасывайте ничего, пока не закончите сборку. На нижней фотографии в середине, между двумя деталями от корпуса «головы» робота — небольшое кольцо, которое чуть не полетело в мусор вместе с прочими «обрезками». А это, между прочим, держатель для светодиодного фонарика в «голове» механизма захвата.

Процесс сборки


К роботу прилагается инструкция без лишних слов — только изображения и чётко каталогизированные и промаркированные детали.

Детали достаточно удобно откусываются и зачистки не требуют, но мне понравилась идея каждую деталь обработать ножом для картона и ножницами, хотя это и не обязательно.

Сборка начинается с четырёх из пяти входящих в конструкцию моторов, собирать которые настоящее удовольствие: я просто обожаю шестерёночные механизмы.

Моторчики мы обнаружили аккуратно упакованными и «прилипшими» друг к другу — готовьтесь ответить на вопрос ребёнка, почему коллекторные моторчики магнитятся (можно сразу в комментариях! 🙂

Важно: в 3 из 5 корпусов моторчиков нужно утопить гайки по бокам — на них в дальнейшем мы посадим корпуса при сборке руки. Боковые гайки не нужны только в моторчике, который пойдёт в основу платформы, но чтобы потом не вспоминать, какой корпус куда, лучше утопите гайки в каждом из четырёх жёлтых корпусов сразу. Только для этой операции будут нужны плоскогубцы, в дальнейшем они не понадобятся.

Примерно через 30-40 минут каждый из 4х моторов оказался снабжён своим шестереночным механизмом и корпусом. Собирается всё не сложнее, чем в детстве собирался «Киндер-сюрприз», только гораздо интереснее. Вопрос на внимательность по фото выше: три из четырёх выходных шестерёнок черные, а где белая? Из её корпуса должны выходить синий и чёрный провод. В инструкции это всё есть, но, думаю, обратить на это внимание ещё раз стоит.

После того, как у вас на руках оказались все моторы, кроме «головного», вы приступите к сборке платформы, на которой будет стоять наш робот. Именно на этом этапе ко мне пришло понимание, что с шурупами и винтами надо было поступать более вдумчиво: как видно на фото выше, двух винтов для скрепления моторчиков вместе за счет боковых гаек мне не хватило — они уже были где-то мною же вкручены в глубине уже собранной платформы. Пришлось импровизировать.

Когда платформа и основная часть руки собраны, инструкция предложит вам перейти к сбору механизма захвата, где полно мелких деталей и подвижных частей — самое интересное!

Но, надо сказать, что на этом спойлеры закончатся и начнутся видео, так как мне нужно было ехать на встречу с подругой и робота, которого не удалось успеть закончить, пришлось захватить с собой.

Как стать душой компании при помощи робота


Легко! Когда мы продолжили сборку вместе, стало понятно: собирать робота самостоятельно — очень приятно. Работать над конструкцией вместе — приятно вдвойне. Поэтому смело могу рекомендовать этот набор для тех, кто не хочет сидеть в кафе за скучными разговорами, но хочет повидаться с друзьями и хорошо провести время. Более того, мне кажется, и тимбилдинг с таким набором — например, сборка двумя командами, на скорость — практически беспроигрышный вариант.

Робот ожил в наших руках сразу, как только мы закончили сборку. Передать вам наш восторг, я, к сожалению, не могу словами, но, думаю, многие меня здесь поймут. Когда конструкция, которую ты сам собрал вдруг начинает жить полноценной жизнью — это кайф!

Мы поняли, что жутко проголодались и пошли поесть. Идти было недалеко, поэтому робота мы донесли в руках. И тут нас ждал ещё один приятный сюрприз: робототехника не только увлекательна. Она ещё и сближает. Как только мы сели за столик, нас окружили люди, которые хотели познакомиться с роботом и собрать себе такого же. Больше всего ребятам понравилось здороваться с роботом «за щупальца», потому что ведёт он себя действительно как живой, да и в первую очередь это же рука! Словом, основные принципы аниматроники были освоены пользователями интуитивно. Вот как это выглядело:

Troubleshooting


По возвращении домой меня ждал неприятный сюрприз, и хорошо, что он случился до публикации этого обзора, потому что теперь мы сразу обговорим troubleshooting.

Решив попробовать подвигать рукой по максимальной амплитуде, удалось добиться характерного треска и отказа функциональности механизма мотора в локте. Сначала это меня огорчило: ну вот, новая игрушка, только собрана — и уже больше не работает.

Но потом меня осенило: если ты сам её только что собрал, за чем же дело стало? =) Я же прекрасно знаю набор шестерёнок внутри корпуса, а чтобы понять, сломался ли сам мотор, или просто недостаточно хорошо был закреплён корпус, можно не вынимая моторчика из платы дать ему нагрузку и посмотреть, продолжатся ли щелчки.

Вот тут-то мне и удалось почувствовать себя настоящим робо-мастером!

Аккуратно разобрав «локтевой сустав», удалось определить, что без нагрузки моторчик работает бесперебойно. Разошёлся корпус, внутрь выпал один из шурупов (потому что его примагнитил моторчик), и если бы мы продолжили эксплуатацию, то шестерёнки были бы повреждены — в разобранном виде на них была обнаружена характерная «пудра» из стёршейся пластмассы.

Очень удобно, что робота не пришлось разбирать целиком. И классно на самом деле, что поломка произошла из-за не совсем аккуратной сборки в этом месте, а не из-за каких-то заводских трудностей: их в моём наборе вообще обнаружено не было.

Совет: первое время после сборки держите отвёртку и плоскогубцы под рукой — могут пригодиться.

Что можно воспитать благодаря данному набору?


Уверенность в себе!

Мало того, что у меня нашлись общие темы для общения с совершенно незнакомыми людьми, но мне также удалось самостоятельно не только собрать, но и починить игрушку! А значит, я могу не сомневаться: с моим роботом всегда всё будет ок. И это очень приятное чувство, когда речь идёт о любимых вещах.

Мы живём в мире, где мы страшно зависим от продавцов, поставщиков, сотрудников сервиса и наличия свободного времени и денег. Если ты почти ничего не умеешь делать, тебе за всё придётся платить, и скорее всего — переплачивать. Возможность починить игрушку самому, потому что ты знаешь, как у неё устроен каждый узел — это бесценно. Пусть у ребёнка такая уверенность в себе будет.

Итоги


Что понравилось:
  • Собранный по инструкции робот не потребовал отладки, запустился сразу
  • Детали почти невозможно перепутать
  • Строгая каталогизация и наличие деталей
  • Инструкция, которую не надо читать (только изображения)
  • Отсутствие значимых люфтов и зазоров в конструкциях
  • Лёгкость сборки
  • Лёгкость профилактики и починки
  • Last but not least: свою игрушку собираешь сам, за тебя не трудятся филиппинские дети

Что нужно ещё:
  • Ещё крепёжных элементов, прозапас
  • Детали и запчасти к нему, чтобы можно было заменить при необходимости
  • Ещё роботов, разных и сложных
  • Идеи, что можно улучшить\приделать\убрать — словом, на сборке игра не заканчивается! Очень хочется, чтобы она продолжалась!

Вердикт:

Собирать робота из этого конструктора — не сложнее, чем паззл или «Киндер-сюрприз», только результат гораздо масштабнее и вызываЛ бурю эмоций у нас и окружающих. Отличный набор, спасибо, Даджет!

В заключение, Хабр, у меня к тебе несколько вопросов:

  1. Как бы ты использовал собственный манипулятор?
  2. Как думаешь, можно ли что-то поменять или добавить в конструкции самого робота, чтобы не останавливаться и продолжать играть?
  3. Что, возможно, не было мною учтено в процессе сборки?
  4. Да и вообще, как тебе обзор? =)

habr.com

Как роботы помогают человеку в разных сферах жизни

В мире, переживающем четвёртую промышленную революцию, многое становится автоматическим. Появляются роботы, которые трудятся на заводах и упрощают обычный человеческий быт.

 

Промышленные роботы


Роботы последнего поколения подвижны и эффективны. Они упаковывают товары, наклеивают этикетки, сортируют товары на складе. Некоторые могут обрабатывать деревянные и металлические изделия.

 

KUKA KR QUANTEC PA

Образцовый укладчик, похожий на большую механическую руку. Он работает при низкой температуре и поэтому востребован в пищевой промышленности, где нужно хранить грузы в морозильной камере.

Машине не нужен подогрев или защита от холода. Это обеспечивает минимальный износ оборудования. Kuka также занимается упаковкой товаров, выборочным комплектованием и другими операциями манипулирования.

 

FANUC M-2000iА

Японские роботы этой серии захватывают и перевозят тяжести. Они исполняют роль погрузчика, причём без участия оператора. FANUC – прочный шестиосный аппарат с самой большой грузоподъёмностью в мире (до 1,2 тонны).

Работа ведётся от 0 до +45 градусов, а длинная механическая рука может дотянуться к объекту так же, как это делает подъёмный кран.

 

Universal Robots

Это серия универсальных манипуляторов. Модель UR10 становится «третьей рукой» человека и помогает проводить литьевые или сварочные работы быстрее.

Другие версии Universal Robots завинчивают детали, подготавливают материалы для 3D-печати, складируют товары.

 

Медицинские роботы


Первоначально они использовались как вспомогательные устройства для сложных операций, но сейчас некоторые модели могут лечить пациентов сами, при частичном контроле докторов.

 

Хирург Da Vinci

Это модуль с четырьмя руками, у каждой из которых есть хирургический инструмент или камера. Вес машины – 500 кг. Любая операция Da Vinci исключает появление шрамов у больного, благодаря ювелирной точности. Несколько десятков моделей уже работают в России.

 

Японский фармацевт HOSPI

Эта машина – автоматизированная аптечка. Она нужна для выполнения простых функций санитарки. Речь идёт о поиске и подаче лекарств.

HOSPI, разработанный компанией Panasonic, запоминает, у какого пациента какой рецепт, забирает товары на складе и возвращается на сестринский пост. Он работает без подзарядки до 7 часов, передвигается со скоростью 1 м/с и перевозит до 20 кг.

 

HAL – роботизированный экзоскелет для нижней части туловища или всего тела

Костюм сделан для парализованных людей или больных, имеющих проблемы с передвижением. Он помогает быстрее восстановиться после травм или серьёзных операций. Сенсоры экзоскелета крепятся на кожу, чтобы перехватывать мозговые импульсы для мышц. А приводы на коленях, талии, плечах, локтях выполняют движения.

 

Военные роботы


Уже давно стоят на службе безопасности в США, России, Израиле, Китае.

В России первым таким примером можно считать танки ТТ-26 на дистанционном управлении, которые применялись в Финской войне.

Сейчас робототехника военного назначения всё ещё требует контроля со стороны человека, поскольку не оснащена полноценным искусственным интеллектом. Она не отличает мирное население от военных.

 

Сапёр «Богомол-3»

Российская разработка «Богомол-3» нейтрализует заряды. С такой машиной специалист обезвреживает взрывное устройство на безопасном расстоянии. Он работает даже с днищем автомобиля и подниматься по ступенькам высотой до 20 см.

 

Разведчик Dogo

Миниатюрная машина израильского производства имеет отличную проходимость и умеет забираться на лестницы. Это не только инструмент для изучения вражеской территории, а тактический боевой робот, действующий внутри зданий, тоннелей или бункеров. Dogo – оснащён пистолетом Glock-26.

 

Инженер для разминирования MarkV-A1

Инновация американской компании Northrop Grumman Corporation. Боевая телеуправляемая система имеет несколько видеокамер, водяную пушку или дробовик для уничтожения бомб. Он применяется в разных подразделениях США, Канады, Израиля.

 

Бытовые роботы


Роботы становятся полезными для повседневной жизни, сохраняя время. Они не только выполняют рутинные дела, но и решают творческие задачи: от автоматического мытья окон до праздничной сервировки стола.

Машина может почистить бассейн, выпечь блинчики, покормить ребёнка с ложечки или погладить бельё.

 

Пылесосы

В качестве примера можно привести LG Hom-Bot Square – робота, который убирается даже вдоль стен и в углах. Никаких лишних покупок не требуется: все насадки уже в комплекте. Такой помощник работает беззвучно, тщательно всасывает пыль, обходит препятствия и делает влажную чистку.

 

Газонокосильщик

Пример – RoboMower, который выпускается почти 25 лет компанией Friendly Robotics. Находка для владельцев загородного участка. Вы экономите время, а ещё не беспокоитесь о шуме обычной косилки.

Машина сама подзаряжает аккумулятор, легко объезжает территорию, удобряя почву срезанной травой. Это сокращает отходы и улучшает экологию.

 

Автоматизированный туалет для котов Litter Robot

Нестандартный бытовой робот. Компания Automated Pet Care Products предлагает его тем, кому надо оставить животное на несколько суток. Когда питомец закончил свои дела в лотке, машина убирает содержимое в нижний поддон, обновляя наполнитель. Litter Robot безопасен и обходится хозяевам примерно в $1 000.

 

Робот-человек


Если машине предстоит выполнять социальную функцию (например, быть домработницей или собеседником), создатели стараются сделать её гуманоидом или андроидом, то есть человекоподобной машиной.

Эти модели становятся точными копиями реальных людей. Они проявляют эмоции, ведут осмысленный разговор, считывают реакции в общении.

 

Geminoid DK

Японский киборг, сделанный в 2006 году. Это реалистичная копия Хенрика Шарфа – датского профессора по психологии, а также вообще первый робот с европейской внешностью от азиатских разработчиков. Geminoid DK имитирует жесты, дыхание и общается с посетителями научного центра.

Разработчик киборга, Хироси Исигуро, успел создать ещё одну модель — Geminoid F, которая отличается фотогеничностью и живой мимикой.

 

Надин

Это социальный робот-компаньон. Гуманоид из Сингапура – копия своей создательницы Надежды Тельман. Задача андроида – стать идеальной сиделкой для пожилых людей или детей-аутистов.

Надин умеет запоминать слова собеседника, распознавать знакомых, подстраиваться под поведение человека. Для лучшей коммуникации Надин даже устроили секретарём на университетский ресепшн.

 

BINA48

BINA48 – интеллектуальный робот-человек, который уже успел стать легендарным. Гуманоид – копия Бины Аспен. Он сделан для экспериментов в области программирования мыслей. BINA48 выражает около 60 чувств и имеет большой словарный запас.

Живая Бина Аспен обучала машину своей походке, мимике, речевому стилю. Андроид быстро схватывает знания, легко шутит и поддерживает беседы на сложные философские темы, используя реальные воспоминания женщины.

 

Российские роботы


За отечественную робототехнику не стыдно. Многие университетские центры создают русских роботов, которые помогают учёным, солдатам или пациентам.

 

AnyWalker 

Это многофункциональный помощник и образовательная платформа для разработок следующих поколений. Машина сделана силами групп московского и кубанского вузов, а также компании «Технодинамика».

Модель работает всего на двух опорах, но умеет подниматься по лестницам и открывать двери. Поражает его способность двигаться в условиях низкой проходимости.

 

«Марибот»

Автономный робот для морских исследований от Самарского университета. Предполагается, что машину можно оставить на дне на целый год. Она будет проводить сейсморазведку, анализировать температуру, состав воды, уровень соли.

У «Марибота» есть надводная часть и подводная, в которой расположен двигатель для преобразования энергии волн. Иными словами, он работает сам, без прямого участия человека. Важное преимущество – отсутствие магнитных полей, которые часто искажают переданную на сушу информацию.

 

R.Bot

Это первый робот в России с онлайн управлением. В машине есть видеокамера, стереодинамики и микрофон. Он вращается по оси, поворачивает голову и передвигаться по местности на трёх колёсах.

Скорость R.Bot от 2 до 5 км/ч, а время работы составляет 8 часов. Он может помогать на презентациях, а ещё быть сиделкой или медсестрой.


Читайте: Персональный мир и полная автоматизация. Что такое четвёртая промышленная революция?


invlab.ru

Что такое робот? Робот является автоматическим устройством.

Содержание статьи

Робот является автоматическим устройством. Он действует по заложенной в него программе. Робот сделан по подобию живого организма и получает информацию от сенсоров (датчиков). Впервые слово робот ввел в употребление чешский писатель Карел Чапек и его брат Йозеф в 1920 году для пьесы «Россумские универсальные роботы». Означает оно подневольный труд и происходит от чешского слова «robota» или «robot».

Ранее в переводе на русский язык оно звучало как «роботарь», но в наше время мы его уже практически не услышим.

Для чего нужны роботы?

Робот нужен для того, чтобы заменить человека в тяжелых производственных или опасных условиях. Робот работает по заложенной в него программе, на основе получения информации от внешних устройств – сенсоров или по другому датчиков. Фактически любой робот копирует живые организмы и органы чувств людей, животных.  То есть использует принципы такой прикладной науки как бионика.

Роботы могут работать автономно или управляться оператором, то есть человеком, который отдает команды. В промышленности обычно используются стационарные роботы, которые совсем не похожи на людей. Это различного вида

  • станки
  • производственные линии
  • манипуляторы и прочее.

Роботы, похожие на людей, называются андроидами. Сейчас их больше используют как бытовые игрушки или как помощника по дому с очень ограниченным функционалом.

Роботов разделяют по категориям на много групп. Каждая классификация неполная и можно придумать много других.

Какие бывают типы роботов:

Промышленные роботы

– выполняют различные производственные задачи. Всегда есть устройство управления – контроллер, может включать в себя манипулятор, сервопривод, различные сенсоры, пневмоцилиндры и многое другое. Все зависит от того, что делают на этом производстве. Например — склады, логистика здесь требуются конвейеры, штабелеры и т.д. Выполняют различные технологические операции, перемещение предметов, обработку материалов.

Медицинские роботы

– наиболее известный хирургический робот «Да Винчи». Он управляется несколькими операторами хирургами. При его помощи проводят высокоточные операции. По своей сути это управляемый манипулятор. Обычно медицинские роботы совсем не похожи на людей. Также есть роботы, которые выполняют отдельные функции, например, массаж или внутривенные инъекции, терапевтические функции и прочее. Для более точечных операций идет разработка нано-роботов. Они смогут вводиться внутрь человеческого организма.

Бытовые роботы

– облегчают жизнь человеку. Это роботы, выполняющие функции секретаря, уборки помещений, роботы животные. Например робот-собачка, способная выполнять некоторые команды, роботы-пылесосы и другие.

Робот, которые обеспечивают безопасность.

— широко используются силовыми структурами. Это системы контроля доступом, автоматические устройства пожаротушения. МЧС и полиция используют беспилотники-дроны, подводных роботов для предотвращения пожаров и глубоководных работ.

Боевые роботы

—  являются как правило дистанционно управляемыми и предназначены для замены человека в особо опасных и боевых ситуациях. Это роботы-минеры, роботы-саперы, роботы разведчики. Автономные боевые роботы пока находятся в стадии разработки.

Роботы учёные

– постепенно начинают использоваться для научных исследований и разработок. Для них используют все более совершенные алгоритмы управления. Роботы уже в состоянии проводить научные эксперименты, опыты, анализировать различные процессы, делать прогнозы и выдвигать теории.  Эти роботы могут работать без перерыва, у них нет амбиций, они не могут обманывать и утаивать информацию. Также роботы лишены субъективной оценки своей работы.

Робот учитель

– может выполнять многие задачи, которые выполняет современный учитель. Он может читать вслух, общаться на многих языках, выдавать задания. Но пока не может распознавать эмоции человека, думать, как человек. Такой робот-учитель лишен индивидуального подхода к учащимся. У него сложности с мотивацией учеников и управлением классом.

Мы видим что различных типов роботов достаточно много и тому что такое робот можно дать много определений. Но пока у всех роботов отсутствует эмоциональная составляющая, пока это только управляемые программируемые механизмы. Этот перечень роботов далеко не полный. Каждый тип роботов также подразделяется на множество видов. С каждым годом мир роботов становится все больше и разнообразнее.

legoteacher.ru

Робот — это… Что такое Робот?

Ро́бот (чеш. robot, от robota — подневольный труд или rob — раб) — автоматическое устройство, предназначенное для осуществления производственных и других операций, обычно выполняемых человеком (иногда животным). Использование роботов позволяет облегчить или вовсе заменить человеческий труд на производстве, в строительстве, при рутинной работе, при работе с тяжёлыми грузами, вредными материалами, а также в других тяжёлых или небезопасных для человека условиях[1][2].

Робот может выглядеть как угодно. В настоящее время в промышленном производстве широко применяются различные роботы, внешний вид которых (по причинам технического и экономического характера) далёк от «человеческого».

Робот может управляться оператором, либо работать по заранее составленной программе.

История возникновения слова

Слово «робот» было придумано чешским писателем Карелом Чапеком и его братом Йозефом и впервые использовано в пьесе Чапека «Р. У. Р.» («Россумские универсальные роботы», 1920). До появления промышленных роботов считалось, что роботы должны выглядеть подобно людям.

Предыстория

Мифические искусственные существа

Идея искусственных созданий впервые упоминается в древнегреческом мифе о Кадме, который, убив дракона, разбросал его зубы по земле и запахал их, из зубов выросли солдаты, и в другом древнегреческом мифе о Пигмалионе, который вдохнул жизнь в созданную им статую — Галатею. Также в мифе про Гефеста рассказывается, как он создал себе различных слуг. Еврейская легенда рассказывает о глиняном человеке — Големе, который был оживлён пражским раввином (махараль ми-Праг) Йехудом Бен Бецалелем (1509(?)-1609) при помощи каббалистической магии.

Похожий миф излагается в скандинавском эпосе Младшая Эдда. Там рассказывается о глиняном гиганте Мисткалфе, созданном троллем Рунгнером для схватки с Тором, богом грома.

Технические устройства

Очевидно, первыми прообразами роботов были механические фигуры, созданные арабским ученым и изобретателем Аль-Джазари (1136—1206). Так, он создал лодку с четырьмя механическими музыкантами, которые играли на бубнах, арфе и флейте.

Чертёж человекоподобного робота был сделан Леонардо да Винчи около 1495 года. Записи Леонардо, найденные в 1950-х, содержали детальные чертежи механического рыцаря, способного сидеть, раздвигать руки, двигать головой и открывать забрало. Дизайн скорее всего основан на анатомических исследованиях, записанных в Витрувианском человеке. Неизвестно, пытался ли Леонардо построить робота.[3]

С начала XVIII века в прессе начали появляться сообщения о машинах с «признаками разума», однако в большинстве случаев выяснялось, что это мошенничество. Внутри механизмов прятались живые люди или дрессированные животные.

Французский механик и изобретатель Жак де Вокансон создал в 1738 году первое работающее человекоподобное устройство (андроид), которое играло на флейте. Он также изготовил механических уток, которые, как говорили, умели клевать корм и «испражняться».

Хронология

Конец XIX века — русский инженер Пафнутий Чебышёв придумал механизм — стопоход, обладающий высокой проходимостью.

1898 — Никола Тесла разработал и продемонстрировал миниатюрное радиоуправляемое судно.

1921 — Чешский писатель Карел Чапек представил публике пьесу под названием «Р. У. Р.» («Россумские Универсальные Роботы»)[4], откуда и взяло начало слово «робот» (от словацк. robota).

1930-е — Появились конструкции внешне напоминающих человека устройств, способных выполнять простейшие движения и воспроизводить фразы по команде человека. Первый такой «робот» был сконструирован американским инженером Д. Уэксли для Всемирной выставки в Нью-Йорке в 1927 году.

1950-е — Для работы с радиоактивными материалами стали разрабатывать механические манипуляторы, которые копировали движения рук человека, находящегося в безопасном месте.

1960 — Дистанционно управляемая тележка с манипулятором, телекамерой и микрофоном применялась для осмотра местности и сбора проб в зонах высокой радиоактивности.

1968 — Японская компания Kawasaki Heavy Industries, Ltd. получила лицензию на производство робота от американской фирмы Unimation Inc. и собрала своего первого промышленного робота. C тех пор Япония начала неуклонное движение к тому, чтобы стать мировой столицей роботов – с более чем 130 компаниями, вовлеченных в их производство. Изначально сконструированные в США, первые роботы Японии импортировались в малых количествах. Инженеры изучали их и применяли в производстве в таких специфических работах, как сварка и распыление. В 70-х годах были разработаны многочисленные возможности практического применения в данной области.

1979 — В МГТУ им. Н. Э. Баумана по заказу КГБ был сделан аппарат для обезвреживания взрывоопасных предметов — сверхлёгкий мобильный робот МРК-01.

1980– коммерческое начало для роботов, производимых на основе высоких технологий. С этого момента рынок начал расти, несмотря на обвал, произошедший в экономике Японии, и на то, что производство (в основном потребительская электроника) было перемещено за рубеж, что повлияло на уменьшение спроса внутри страны в 90-х годах. Постепенно японская экономика восстановилась, и с 2003 года опять наблюдается рост. В настоящее время на долю Японии приходится около 45% функционирующих в мире промышленных роботов. Если говорить об абсолютных цифрах, то к концу 2004 года в Японии было задействовано 356500 промышленных роботов, на втором месте со значительным отрывом шли Соединенные Штаты Америки (122000 промышленных роботов). Япония также занимает первое место в мире и по экспорту промышленных роботов. Ежегодно эта страна производит более 60 тысяч роботов, почти половина из которых идет на экспорт. Такой разрыв, безусловно, делает нашествие японских роботов еще более заметным.

1982 — 18-27 октября 1982 г. в Ленинграде, в выставочном комплексе в Гавани проходила, вероятно, первая в СССР, Международная выставка «Промышленные роботы-82».

1986 — в Чернобыле, впервые в СССР применены роботы для очистки радиоактивных отходов.

2005 — ВМФ России в Балтийском море проведены испытания подводного робота-разведчика «Гном».[источник не указан 1312 дней]

2007 — МВД России в г. Перми проводило испытания тестового робота-милиционера Р-БОТ 001

2010 — в Америке в продажу поступили новые роботы PR2

Технологии

Система передвижения

Робот на гусеничном ходу

Для передвижения по открытой местности чаще всего используют колёсную или гусеничную (примерами подобных роботов могут служить Warrior и PackBot). Реже используются шагающие системы (примерами подобных роботов могут служить BigDog и Asimo). Для неровных поверхностей создаются гибридные конструкции, сочетающие колёсный или гусеничный ход со сложной кинематикой движения колёс. Такая конструкция была применена в луноходе.

Внутри помещений, на промышленных объектах используются передвижения вдоль монорельсов, по напольной колее и т. д. Для перемещения по наклонным, вертикальным плоскостям используются системы, аналогичные «шагающим» конструкциям, но с вакуумными присосками. Так же известны роботы, подражающие движениям живых организмов — паукам, змеям[5], рыбам[6], птицам[7], морским скатам[8], насекомым[9] и другим.

Система распознавания образов

Системы распознавания уже способны определять простые трехмерные предметы, их ориентацию и композицию в пространстве, а также могут достраивать недостающие части, пользуясь информацией из своей базы данных (например, собирать конструктор Lego).

Двигатели

В настоящее время в качестве приводов обычно используются двигатели постоянного тока, шаговые электродвигатели и сервоприводы.

Существуют разработки двигателей, не использующих в своей конструкции моторов: например, технология сокращения материала под действием электрического тока (или поля) (см. электроактивные полимеры), которая позволяет добиться более точного соответствия движения робота натуральным плавным движениям живых существ.

Искусственный интеллект (AI)

Внешний вид

В Японии не прекращаются разработки роботов, имеющих внешний вид, на первый взгляд неотличимый от человеческого. Развивается техника имитации эмоций и мимики «лица» роботов. [10]

В июне 2009 года ученые Токийского университета представили человекоподобного робота «KOBIAN», способного выражать свои эмоции — счастье, страх, удивление, грусть, гнев, отвращение — с помощью жестов и мимики. Робот способен открывать и закрывать глаза, двигать губами и бровями, использовать руки и ноги[11].

Технология подзарядки

Разработаны технологии, позволяющие роботам самостоятельно осуществлять подзарядку, находя и подсоединяясь к стационарной зарядной станции. В настоящий момент в разных лабораториях проходят испытания различных систем, обеспечивающих бесконтактную подзарядку аккумуляторов в помещениях (например, направленным мощным инфракрасным лазером или индукционным принципом).

Математическая база

Помимо уже широко применяющихся нейросетевых технологий, существуют алгоритмы самообучения взаимодействию робота с окружающими предметами в реальном трехмерном мире: робот-собака Aibo под управлением таких алгоритмов прошел те же стадии обучения, что и новорожденный младенец — самостоятельно научившись координировать движения своих конечностей и взаимодействовать с окружающими предметами (погремушками в детском манеже). Это дает ещё один пример математического понимания алгоритмов работы высшей нервной деятельности человека.

Навигация

Системы построения модели окружающего пространства по ультразвуку или сканированием лазерным лучом широко используются в гонках роботизированных автомобилей (которые уже успешно и самостоятельно проходят реальные городские трассы и дороги на пересеченной местности, с учетом неожиданно возникающих препятствий).

Промышленные роботы

Появление станков с числовым программным управлением (ЧПУ) привело к созданию программируемых манипуляторов для разнообразных операций по загрузке и разгрузке станков. Появление в 70-х гг. микропроцессорных систем управления и замена специализированных устройств управления на программируемые контроллеры позволили снизить стоимость роботов в три раза, сделав рентабельным их массовое внедрение в промышленности. Этому способствовали объективные предпосылки развития промышленного производства.

Бытовые роботы

Одним из первых примеров удачной массовой промышленной реализации бытовых роботов стала механическая собачка AIBO корпорации Sony.

В сентябре 2005 в свободную продажу впервые поступили первые человекообразные роботы «Вакамару» производства фирмы Mitsubishi. Робот стоимостью $15 тыс. способен узнавать лица, понимать некоторые фразы, давать справки, выполнять некоторые секретарские функции, следить за помещением.

Всё большую популярность набирают роботы-уборщики, по своей сути — автоматические пылесосы, способные самостоятельно прибраться в квартире и вернуться на место для подзарядки без участия человека.

Роботы для обеспечения безопасности

Боевые роботы

Swords — боевая система наблюдения и разведки.

Боевым роботом называют автоматическое устройство, заменяющее человека в боевых ситуациях или при работе в условиях, несовместимых с возможностями человека, в военных целях: разведка, боевые действия, разминирование и т. п. Боевыми роботами являются не только автоматические устройства с антропоморфным действием, которые частично или полностью заменяют человека, но и действующие в воздушной и водной среде, не являющейся средой обитания человека (авиационные беспилотные с дистанционным управлением, подводные аппараты и надводные корабли). В настоящее время большинство боевых роботов являются устройствами телеприсутствия, и лишь очень немногие модели имеют возможность выполнять некоторые задачи автономно, без вмешательства оператора.

Роботы-учёные

  • Первые роботы-учёные Адам и Ева были созданы в рамках проекта Robot Scientist университета Аберистуита и в 2009 году одним из них было совершено первое научное открытие[12].
  • К роботам-ученым безусловно можно отнести роботов, с помощью которых исследовались вентшахты Большой Пирамиды Хеопса. С их помощью были открыты т.н. «дверки Гантенбринка» и т.н. «ниши Хеопса». Исследования продолжаются.

Роботы как хобби

Шагающий робот, собранный из набора Robotis Bioloid.

Изобретатель Пит Редмонд (Pete Redmond) создал робота RuBot II, который может собрать кубик Рубика за 35 секунд.

Существует также направление моделизма, которое подразумевает создание роботов. Сейчас моделисты делают как радиоуправляемых роботов, так и автономных. Проводятся соревнование по нескольким основным направлениям.

Российские соревнования мобильных роботов:

  • Молодежный научно-технический фестиваль «Мобильные роботы»[13]
  • Российская национальная лига евробот[14]
  • «Робофест» в Москве

К соревнованиям автономных роботов относятся перемещение по контрастной полосе на скорость, борьбу сумо, футбол роботов. С 21 по 23 июня 2010 года в городе Харбин (Китай) прошли первые Олимпийские игры среди человекоподобных роботов.[15]

Трагические факты

  • В 1981 году Кэндзи Урада, рабочий завода Kawasaki стал первой[источник не указан 1308 дней] официальной жертвой, погибшей от руки робота.[16] С этого времени число жертв роботов растет, несмотря на внедрение усовершенствованных механизмов безопасности.
  • 18 марта 2008 года 81-летний австралиец стал первым человеком, который покончил жизнь самоубийством при помощи робота, которого сам собрал согласно схемам, взятым из сети Интернет.[17]

Производители роботов

Существуют компании, специализирующиеся на производстве роботов. Одна из крупнейших подобных компаний — iRobot Corporation. Так же, роботов выпускают некоторые компании, работающие в сфере высоких технологий, такие как Honda, Mitsubishi, Sony, World Demanded Electronic, Gostai, KUKA.

Известные модели роботов

Существует несколько моделей роботов, широко известных из средств массовой информации: робот-андроид ASIMO, робот-собака AIBO, робот-пылесос Roomba, C3PO и R2-D2 из Звёздных войн, T-800 и Т-1000 из серии фильмов Терминатор, Робокоп из фильма «Робот-полицейский», Вертер из фильма Гостья из будущего, Робот Бендер из мультсериала Футурама и другие.

Роботы в культуре

Робот в современной стилистике

Роботы, как культурный феномен появились с пьесой Карела Чапека «R.U.R.», описывающую конвейер, на котором роботы собирают самих себя. С развитием технологии люди всё чаще видели в механических созданиях что-то больше, чем просто игрушки. Литература отразила страхи человечества, о возможности замены людей их собственными творениями. В дальнейшем эти идеи развиваются в фильмах «Метрополис» (1927), «Бегущий по лезвию» (1982) и «Терминатор» (1984). Как роботы с искусственным интеллектом становятся реальностью и взаимодействуют с человеком, показано в фильмах «Искусственный разум» (2001) режиссёра Стивена Спилберга и «Я, робот» (2004) режиссёра Алекса Пройяса.

  1. Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинён вред.
  2. Робот должен повиноваться всем приказам, которые даёт человек, кроме тех случаев, когда эти приказы противоречат Первому Закону.
  3. Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит Первому и Второму Законам.

Оригинальный текст  (англ.)  

  1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
  2. A robot must obey orders given it by human beings except where such orders would conflict with the First Law.
  3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.
  • Разнообразное аниме, где фигурируют боевые или другие роботы популярно в Японии и даже перешло в отдельный жанр меха. В этом жанре меха были созданны многие культовые аниме, которые в мире стали символами японской анимации: Transformers, Gundam, Voltron, Neon Genesis Evangelion. Во многом благодаря этому начиная с 1980—1990 гг. роботы стали частью национальной культуры Японии а также частью стереотипов о ней.
  • Иногда тема роботов обыгрывается в песнях, исполняемых эстрадными певцами.

См. также

Типы роботов:

Связанные термины:

События:

Прочее:

Примечания

Ссылки

Видео:

dic.academic.ru

Посмотреть сайт глазами поискового робота

В некоторых случаях бывает интересно посмотреть HTML код понравившейся станицы. Например узнать какой .js библиотекой достигнут тот или иной функционал, а может заинтересовали CSS стили оформления и.т.д. Но откравая страницу правой кнопкой мыши мы можем иногда наблюдать сжатый код написанный в одну строчку, ну и разумеется без подсветки кода. Что согласитесь затрудняет поиск заинтересовавшего куска кода. Наш онлайн сервис поможет открыть HTML в удобочитаемом виде с подсветкой и форматированием кода.

Глаз робота отличается от пользователя.

Это связано с тем, что некоторые сайты могут отдавать различный контент в зависимости от пользователя или робота.

Например интернет магазин для пользователя может отдаваться различый контент в зависимости от региона проживания.

Метод черной поисковой оптимизации — называется «клоакинг» Термин произошел от английского слова to cloak – маскировать, прятать, скрывать — Сайты, отдающие разный контент пользователям и роботам поисковых систем.

Такие сайты Яндекс и Google относят к некачественным сайтам и объявили за клоакинг жесткие штрафные санкции, от пессимизации до бана.

Ярким примером клоакинга могут служить каталоги ссылок скрывающие прямые ссылки от роботов , но показывающие их простому пользователю, который никак не может понять почему же его сылка не видна в поисковых системах.

Обратите внимание, что к клоакингу не относится показ различного содержание веб-ресурса если пользователь просматривает его как авторизованный (через логин и пароль). Также не имеет отношение к клоакингу просмотр динамических страниц с разными URL переменными например URL = user и URL = bot.

Наш онлайн инструмент для веб-мастера позволяет просмотреть код HTML глазами поискового робота Googlebot и робота Яндекса.

Список HTTP USER AGENT:

Пользователь — Я Mozilla/5.0 (X11; Linux x86_64; rv:33.0) Gecko/20100101 Firefox/33.0

Основной робот Яндекса — Mozilla/5.0 (compatible; YandexBot/3.0; +http://yandex.com/bots)

Зеркальщик — робот Яндекса — Mozilla/5.0 (compatible; YandexBot/3.0; MirrorDetector; +http://yandex.com/bots)

Картинки — робот Яндекса — Mozilla/5.0 (compatible; YandexImages/3.0; +http://yandex.com/bots)

Видео — робот Яндекса Mozilla/5.0 (compatible; YandexVideo/3.0; +http://yandex.com/bots)

Вебмастер — робот Яндекса Mozilla/5.0 (compatible; YandexWebmaster/2.0; +http://yandex.com/bots)

Индексатор мультимедийных данных — робот Яндекса Mozilla/5.0 (compatible; YandexMedia/3.0; +http://yandex.com/bots)

Поиск по блогам — робот Яндекса Mozilla/5.0 (compatible; YandexBlogs/0.99; robot; +http://yandex.com/bots)

APIs-Google — робот Google PIs-Google (+https://developers.google.com/webmasters/APIs-Google.html)

AdSense — робот Google Mediapartners-Google

AdsBot Mobile Web Android — робот Google Mozilla/5.0 (Linux; Android 5.0; SM-G920A) AppleWebKit (KHTML, like Gecko) Chrome Mobile Safari (compatible; AdsBot-Google-Mobile; +http://www.google.com/mobile/adsbot.html)

AdsBot Mobile Web — робот Google Mozilla/5.0 (iPhone; CPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1.46 (KHTML, like Gecko) Version/9.0 Mobile/13B143 Safari/601.1 (compatible; AdsBot-Google-Mobile; +http://www.google.com/mobile/adsbot.html)

AdsBot-Google (+http://www.google.com/adsbot.html) AdsBot — робот Google)

Googlebot Images — робот Google Googlebot-Image/1.0

Googlebot News — робот Google Googlebot-News

Googlebot Video — робот Google Googlebot-Video/1.0

Googlebot — робот Google Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Mobile AdSense — робот Google (compatible; Mediapartners-Google/2.1; +http://www.google.com/bot.html)

Mobile Apps Android — робот Google AdsBot-Google-Mobile-Apps

p2pi.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о