Очень сложные математические задачи – Какая самая сложная задача в мире (логическая и по математике)

Содержание

Задачи современной математики, которые до сих пор не решены

На протяжении веков лучшие умы человечества решали одну математическую задачу за другой, однако есть несколько, не поддавшихся до сих пор никому. За нахождение алгоритма их решения некоторые фонды и компании готовы заплатить большие деньги.

Василий Парфенов

Гипотеза Коллатца

Другие названия: гипотеза 3n+1, сиракузская проблема, числа-градины. Если взять любое натуральное число n и совершить с ним следующие преобразования, рано или поздно всегда получится единица. Четное n нужно разделить надвое, а нечетное — умножить на 3 и прибавить единицу. Для числа 3 последовательность будет такой: 3×3+1=10, 10:2=5, 5×3+1=16, 16:2=8, 8:2=4, 4:2=2, 2:2=1. Очевидно, что если продолжить преобразование с единицы, то начнется цикл 1,4,2. Достаточно быстро количество шагов в вычислениях начинает превышать сто и на решение каждой новой последовательности требуется все больше ресурсов.

Небольшой прогресс в решении этой задачи почти вековой давности наметился буквально в прошлом месяце. Однако знаменитый американской математик Терренс Тао лишь ближе всех подошел к нему, но ответа все равно пока не нашел. Гипотеза Коллатца является фундаментом такой математической дисциплины, как «Динамические системы», которая, в свою очередь, важна для множества других прикладных наук, например, химии и биологии. Сиракузская проблема выглядит, как простой безобидный вопрос, но именно это делает ее особенной. Почему ее так сложно решить?

Проблема Гольдбаха (бинарная)

Еще одна задачка, формулировка которой выглядит проще пареной репы — любое четное число (больше 2) можно представить в виде суммы двух простых. И это краеугольный камень современной математики. Данное утверждение легко проверяется в уме для небольших значений: 18=13+5, 42=23+19. Причем рассматривая последнее, можно достаточно быстро понять всю глубину проблемы, ведь 42 представляется и как 37+5 и 11+31, а еще как 13+29 и 19+23. Для чисел больше тысячи количество пар слагаемых становится просто огромным. Это очень важно в криптографии, но даже самые мощные суперкомпьютеры не могут перебирать все значения до бесконечности, поэтому нужно какое-то четкое доказательство для всех натуральных чисел.

Проблема была сформулирована Кристианом Гольдбахом в его переписке с другим величайшим светилом математики Леонардом Эйлером в 1742 году. Сам Кристиан ставил вопрос несколько проще: «каждое нечетное число, больше 5, можно представить в виде суммы трех простых чисел». В 2013 году перуанский математик Харальд Хельфготт нашел окончательное решение этого варианта. Однако предложенное Эйлером следствие этого утверждения, которое и назвали «бинарной проблемой Гольдбаха», до сих пор не поддается никому.

Гипотеза о числах-близнецах

Близнецами называются такие простые числа, которые отличаются всего на 2. Например, 11 и 13, а также 5 и 3 или 599 и 601. Если бесконечность ряда простых чисел была доказана множество раз начиная с античности, то бесконечность чисел-близнецов находится под вопросом. Начиная с 2, среди простых чисел нет четных, а начиная с 3 — делящихся на три. Соответственно, если вычесть из ряда все, подходящие под «правила деления», то количество возможных близнецов становится все меньше. Единственный модуль для формулы нахождения таких чисел — 6, а формула выглядит следующим образом: 6n±1.

Как и всегда в математике, если проблема не решается «в лоб», к ней подходят с другого конца. Например, в 2013 году было доказано, что количество простых чисел, отличающихся на 70 миллионов, бесконечно. Тогда же, с разницей менее чем в месяц, значение разницы было улучшено до 59 470 640, а затем и вовсе на порядок — до 4 982 086. На данный момент существуют теоретические обоснования бесконечности пар простых чисел с разницей в 12 и 6, однако доказанной является лишь разность в 246. Как и прочие проблемы такого рода, гипотеза о числах-близнецах особенно важна для криптографии.

Гипотеза Римана

Если кратко, то Бернхард Риман предположил, что распределение простых чисел по множеству всех натуральных чисел не подчиняется каким-либо законам. Но их количество на заданном участке числового ряда коррелирует с распределением определенных значений на графике дзета-функции. Она расположена выше и для каждого s дает бесконечное количество слагаемых. Например, когда в качестве s подставляется 2, то в результате получается уже решенная «базельская задача» — ряд обратных квадратов (1 + ¼ + 1/9 + 1/16 + …).

Одна из «проблем тысячелетия», за решение которой назначен приз в миллион долларов, а также вхождение в пантеон «богов» современной математики. На деле, доказательство этой гипотезы настолько сильно толкнет вперед теорию чисел, что это событие по праву будет называться историческим. Многие вычисления и утверждения в математике строятся на предположении о том, что «гипотеза Римана» верна, и до сих пор никого не подводили. Немецкий математик сформулировал знаменитую задачу 160 лет назад, и с тех пор к ее решению подступались неисчислимое количество раз, однако прогресс очень скромен.

Гипотеза Берча и Суиннертон-Дайера

Еще одна «задача тысячелетия», за решение которой Институт Клэя одарит миллионом долларов. Не-математику достаточно трудно хотя бы в общих чертах сформулировать и понять, в чем же суть гипотезы. Берч и Свиннертон-Дайер предположили определенные свойства эллиптических кривых. Идея заключалась в том, что ранг кривой можно определить зная порядок нуля дзета-функции. Как говорится, ничего не понятно, но очень интересно.

Эллиптическими кривыми называются такие линии на графике, которые описываются, на первый взгляд, безобидными уравнениями вида y²=x³+ax+b. Некоторые их свойства чрезвычайно важны для алгебры и теории чисел, а решение данной задачи может серьезно продвинуть науку вперед. Наибольший прогресс был достигнут в 1977 году коллективом математиков из Англии и США, которые смогли найти доказательство гипотезы Берча и Суиннертон-Дайера для одного из частных случаев.

Проблема плотной упаковки равных сфер

Это даже не одна, а целая категория схожих проблем. Причем мы сталкиваемся с ними ежедневно, например, когда хотим разложить фрукты на полке в холодильнике или как можно плотнее расставить бутылки на полке. С математической точки зрения необходимо найти среднее количество контактов («поцелуев», также называется контактным числом) каждой сферы с остальными. На данный момент есть точные решения для размерностей 1−4 и 8.

Под размерностью или измерением понимается количество линий, вдоль которых размещаются шары. В реальной жизни больше третьей размерности не встречается, однако математика оперирует и гипотетическими значениями. Решение этой задачи может серьезно продвинуть не только теорию чисел и геометрию вперед, но также поможет в химии, информатике и физике.

Проблема развязывания

И снова каждый день встречающаяся проблема. Казалось бы, что сложного — узел развязать? Тем не менее, вычисление минимального времени, необходимого для этой задачи является еще одним краеугольным камнем математики. Трудность в том, что мы знаем, вычислить алгоритм развязывания можно, но его сложность может быть такой, что даже самый мощный суперкомпьютер будет считать слишком долго.

Первые шаги на пути решения этой задачи были сделаны в 2011 году американским математиком Грегом Купербергом. В его работе развязывание узла из 139 вершин было сокращено со 108 часов до 10 минут. Результат впечатляющий, но это лишь частный случай. На данный момент существует несколько десятков алгоритмов разной степени эффективности, однако ни один из них не является универсальным. Среди применений этой области математики — биология, в частности, процессы сворачивания белков.

Самый большой кардинал

Какая бесконечность самая большая? На первый взгляд бредовый вопрос, но так и есть — все бесконечности разные по размеру. А точнее, по мощности, ведь именно так различают множества чисел в математике. Под мощностью понимается общее количество элементов множества. Например, самая маленькая бесконечность — натуральные числа (1, 2, 3, …), потому что она включает в себя только целые положительные числа. Ответа на этот вопрос пока нет и математики постоянно находят все более мощные множества.

Мощность множества характеризуется его кардинальным числом или просто кардиналом. Существует целая онлайн-энциклопедия бесконечностей и примечательных «конечностей», названная в честь Георга Кантора. Этот немецкий математик первым обнаружил, что неисчислимые множества могут быть больше или меньше друг друга. Более того, он смог доказать разницу в мощностях различных бесконечностей.

Что не так с суммой числа π и e?

Является ли сумма этих двух иррациональных чисел алгебраическим числом? Мы оперируем этими константами сотни лет, но так и не узнали о них все. Алгебраическое число — корень многочлена с целыми коэффициентами. На первый взгляд кажется, что все вещественные числа алгебраичны, но нет, наоборот. Большинство чисел трансцендентны, то есть не являются алгебраическими. Более того, все вещественные трансцедентные числа иррациональны (например, π и e), но вот их сумма может быть любой.

Если от предыдущего абзаца у читателя не заболела голова, то вот продолжение загадки — а что с πe, π/e и π-e? Также неизвестно, а знать это наверняка довольно важно для теории чисел. Трансцедентность числа доказал в конце XIX века Фердинанд фон Линдеман вместе с невозможностью решения задачи квадратуры круга. С тех пор значимых подвижек в решении вопроса не было.

Является ли γ рациональной?

Вот еще одна проблема, которую очень легко написать, но трудно решить. Является ли постоянная Эйлера-Маскерони иррациональной или нет? Рациональные числа можно записать в виде p/q, где p и q — целые числа. Таким образом, 42 и -11/3 являются рациональными, а и √2 — нет. Формула выше позволяет вычислить постоянную, которая является пределом разности между частичной суммой гармонического ряда и натуральным логарифмом числа. За определение ее рациональности миллион долларов, конечно, не светит, зато вполне можно рассчитывать на кресло профессора в Оксфорде.

Значение γ было вычислено до нескольких тысяч знаков после запятой, первые четыре из которых — 0,5772. Она достаточно широко используется в математике, в том числе вместе с другим числом Эйлера — e. Согласно теории цепных дробей, если постоянная Эйлера-Маскерони является рациональной дробью, то ее знаменатель должен быть больше 10 в 242 080 степени.

www.popmech.ru

Логические и математические задачи с собеседований

Разомнем мозг! В этой статье собраны логические и математические задачи, которые нередко встречаются на собеседованиях и могут попасться вам.

Основные проблемы, которые часто возникают в процессе интервью, не в отсутствии опыта или подготовки. Даже по-настоящему опытный разработчик может легко «споткнуться» о  решение какой-нибудь хитро скроенной задачки. Поэтому мы поговорим не о том, как составлять резюме и выгодно презентовать себя. Фокусируемся на решении нетривиальных задач, которые включают в себя решение логического и/или математического характера.

Помните загадку из третьего фильма? Если нет, то вспоминайте, так как этим вопросом любят потчевать в Microsoft.

Задача:

Есть 2 пустых ведра: первое объемом 5 л, второе — 3 л. Как с их помощью отмерить 4 литра воды?

[spoiler title=’Ответ:’ collapse_link=’true’]Сперва наполните пятилитровое ведро. Далее перелейте из него воду в трехлитровое так, чтобы в пятилитровом осталось 2 л воды (полностью заполнив трехлитровое). Вылейте из меньшего ведра всю воду и перелейте в него оставшиеся в большем 2 л. Снова наполните пятилитровое и перелейте один литр в трехлитровое (оно как раз заполнится): так в большем ведре останется 4 л воды.[/spoiler]

Задача:

Есть двадцать баночек с таблетками. Почти во всех таблетки весят по 1 г, и только в одной — по 1,1 г. У нас есть точные весы, с помощью которых нужно определить баночку, каждая таблетка которой весит 1,1 г. Как это сделать, если можно взвесить только 1 раз?

[spoiler title=’Ответ:’ collapse_link=’true’]Давайте абстрагируемся и представим, что у нас 2 баночки, в одной из которых таблетки более тяжелые. Даже если мы поставим их обе на весы, мы ничего не узнаем. Но если мы достанем из одной баночки 1 таблетку, из другой — 2 и положим их на весы — вот тогда-то и откроется истина 🙂 В данном случае вес будет 2,1 или 2,2 (в зависимости от того, сколько каких таблеток мы взяли). Так и определяем нашу баночку.

Вернемся к задаче. Из каждой баночки нужно доставать разное количество таблеток. То есть из первой баночки 1 таблетку, из второй — 2, из третьей — 3 и так далее. Если бы каждая таблетка весила по 1 г, общий вес составил бы 210 г. Но поскольку в одной из баночек таблетки тяжелее, вес будет больше. Для определения нужной баночки просто воспользуемся формулой:

№ тяжелой баночки = (вес - 210) * 10[/spoiler]

Но на этом интересные логические и математические задачи не заканчиваются. Идем дальше!

Задача:

Парень и девушка договорились встретиться ровно в 21:00. Проблема в том, что у обоих часы идут неправильно. У девушки часы спешат на 2 мин., но она думает, что они на 3 мин. отстают. У парня же часы отстают на 3 мин., но он считает, что они на 2 мин. спешат. Кто из пары опоздает на свидание?

[spoiler title=’Ответ:’ collapse_link=’true’]Ничего сложного: чистая математика. Если у девушки часы спешат, а она думает, что они отстают, то поторопится и придет на 5 мин. раньше. Парень, наоборот, посчитает, что у него еще 5 минут времени в запасе, отчего на эти самые 5 мин. опоздает.[/spoiler]

Задача:

Длина курицы при измерении от головы до хвоста составит 45 см, а вот от хвоста до головы (если измерять вдоль брюха) — 53 см. По статистике плотность курицы на единицу боковой проекции составляет 8 г/см2. Усредненная высота курицы, если мерить ее вдоль боковой поверхности, — 21 см. Сколько весит килограмм курицы?

[spoiler title=’Ответ:’ collapse_link=’true’]Килограмм курицы весит 1 килограмм.[/spoiler]

Да, математические задачи с подвохом тоже встречаются 🙂

Задача:

Книга содержит N страниц, которые пронумерованы стандартно: от 1 до N. Если сложить количество цифр (не сами числа), что содержатся в каждом номере страницы, выйдет 1095. Так сколько в книге страниц?

[spoiler title=’Ответ:’ collapse_link=’true’]Каждый номер страницы имеет цифру на месте единицы, так что есть N цифр, расположенных на месте единицы. А вот после 9 начинаются двухзначные числа, и нам нужно добавить N-9 цифр. То же самое с трехзначными, которые начинаются после 99: добавляем N-99 цифр. Продолжать нет смысла, так как сумма не предполагает более 999 страниц. Получаем следующую формулу:

N + (N-9) + (N-99) = 1095

Далее просто решаем:

3N - 108 = 1095

3N = 1203

N = 401

Итого 401 страница.[/spoiler]

Задача:

Математические задачи на собеседованиях бывают и довольно простыми, но зачастую только на первый взгляд. Попробуйте в уме разделить 30 на 1/2 и прибавить 10. Каким будет результат?

[spoiler title=’Ответ:’ collapse_link=’true’]Первое решение, которое обычно приходит на ум, ошибочно:

30/2 + 10 = 25

Если мы делим на дробь, ее нужно переворачивать и производить умножение:

30*2 + 10 = 70[/spoiler]

Задача:

Сколько целых чисел в диапазоне 1-1000 вмещают в себя цифру 3? При подсчете нельзя пользоваться компьютером.

[spoiler title=’Ответ:’ collapse_link=’true’]Запомните, что нам нужно учесть просто факт содержания в числе тройки. Если, например, это 33 — мы не считаем цифру 2 раза. В числе должна быть по крайней мере одна тройка, чтобы его учесть. Например, числа в диапазоне 300-399 дают нам сразу 100 чисел. Еще 10 мы получаем от 30-39. То же касается 130-139, 230-239, etc. Десяток этих чисел уже был учтен при подсчете 330-339, так что убираем его и получаем:

100 + 90 = 190

А еще есть группа чисел (их 100), которые заканчиваются на тройку: 2-993. Мы исключаем из нее такие 10 чисел, как 303, 313 … 393 (они учтены ранее). Получаем еще +90 чисел. У 1/10 из этих 90 на месте десяток также расположилась тройка: 33, 133 … 933. Убираем еще 9, оставляя 81 число. Дальше простая математика:

100 + 90 + 81 = 271

А вот более изящное решение данной задачи. Сперва мы считаем, сколько чисел не включает в себя тройку (на каждое из 3-х мест ставится 9 цифр, которые не тройки):

9 * 9 * 9 = 729

1000 - 729 = 271[/spoiler]

Ну что, размялись? Надеемся, вам понравились собранные логические и математические задачи. Если этого мало, можете заглянуть сюда + ниже вы найдете еще больше задач, специально подобранных Библиотекой программиста 🙂

proglib.io

Самая сложная задача в мире

Наша зада­ча — одно­знач­но опре­де­лить бэкен­да и фрон­тен­да, что­бы мето­дом исклю­че­ния най­ти фул­с­те­ка.

Слож­ность зада­чи в том, что мы не зна­ем, что озна­ча­ют их отве­ты. Если мы что-то спро­сим и нам отве­тят «Надо поду­мать», то как мы пой­мём, это «Да» или «Нет»? Полу­ча­ет­ся, что нам нуж­но зада­вать такие вопро­сы, что­бы уже с пер­во­го отве­та понять, что на самом деле озна­ча­ет их «Зави­сит от ситу­а­ции» или «Надо поду­мать».

Но тра­тить один вопрос из трёх толь­ко что­бы выяс­нить это — глу­по. Надо ещё полу­чить какую-то инфор­ма­цию о том, кто перед нами (или кого перед нами точ­но нет). Зна­чит, пер­вый вопрос дол­жен состо­ять из двух частей — дать нам новую инфор­ма­цию о раз­ра­бот­чи­ке и одно­вре­мен­но с этим уста­но­вить, что у них озна­ча­ет «Зави­сит от ситу­а­ции» и «Надо поду­мать».

Напри­мер, сфор­му­ли­ру­ем вопрос так «Если я спро­шу у тебя „Про­грам­мист В — это фул­стек?“, ты отве­тишь мне „Зави­сит от ситу­а­ции“?»

Общая схе­ма состав­ле­ния подоб­ных вопро­сов такая: мы фор­му­ли­ру­ем какой-то вопрос про дру­го­го про­грам­ми­ста и спра­ши­ва­ем, если бы ответ был вер­ным, ты бы отве­тил вот так-то? Такие вопро­сы помо­гут понять, что за про­грам­мист сто­ит перед нами, и, что самое важ­ное, даст нам допол­ни­тель­ную инфор­ма­цию про вто­ро­го про­грам­ми­ста.

Что­бы понять, как рабо­та­ют такие вопро­сы и поче­му их нуж­но исполь­зо­вать, давай­те раз­бе­рём, как на них отве­ча­ют бэкенд и фрон­тенд. Фул­с­те­ка пока раз­би­рать смыс­ла нет — он отве­ча­ет абсо­лют­но ран­дом­но, и как трак­то­вать его отве­ты, рас­ска­жем поз­же.

Напри­мер, вот вопрос: «Если я спро­шу у тебя „Раз­ра­бот­чик В — это фул­стек“, ты отве­тишь мне „Зави­сит от ситу­а­ции“?»

Если пра­виль­ный ответ на задан­ный нами вопрос — «Да», то нам отве­тят «Зави­сит от ситу­а­ции», а если пра­виль­ный ответ — «Нет», то нам отве­тят «Надо поду­мать».

thecode.media

Самая сложная логическая задача — Википедия

Материал из Википедии — свободной энциклопедии

«Самая сложная логическая головоломка»[1] (итал. L’indovinello più difficile del mondo) — название логической задачи, предложенной американским философом и логиком Джорджем Булосом в итальянской газете «la Repubblica» в 1992 году:

Есть три бога: A, B и C, которые являются богами истины, лжи и случая в произвольном порядке. Бог истины всегда говорит правду, бог лжи — всегда обманывает, бог случая может говорить и правду, и ложь в произвольном порядке. Требуется определить богов, задав 3 вопроса, на которые можно ответить «да» или «нет». Каждый вопрос задаётся только одному богу, но можно задавать одному богу более одного вопроса. Боги понимают язык, но отвечают на своём языке, в котором есть 2 слова «da» и «ja», причём неизвестно, какое слово обозначает «да», а какое «нет».

Булос также разъясняет некоторые моменты задачи:

  • Можно задавать одному богу более чем один вопрос (поэтому другим богам может быть не задано ни одного вопроса вообще).
  • Каков будет следующий вопрос и кому он будет задан, может зависеть от ответа на предыдущий вопрос.
  • Бог случая отвечает случайным образом, зависящим от подбрасываний монетки, спрятанной в его голове: если выпадет аверс, то отвечает правдиво, если реверс — то врёт.
  • Бог случая отвечает «da» или «ja» на любой вопрос, на который можно ответить «да» либо «нет».

Другие комментарии:

  • Нельзя задавать вопросы-«парадоксы», на которые можно ответить и «da» и «ja», или никак нельзя ответить. К примеру, «Ты сейчас ответишь „da“»?

Булос указывает логика Рэймонда Смаллиана как автора задачи и Джона Маккарти за увеличение сложности задачи из-за неясных трактовок «da» и «ja». Похожие задачи есть в книгах Смаллиана[2], например, он описывает остров, где половина жителей зомби (они постоянно лгут), а другая половина — люди (они постоянно говорят правду). Ситуацию усложняет факт, что жители острова прекрасно нас понимают, но древнее табу запрещает им использовать неродные слова. Поэтому они используют ответы «bal» или «da», которые означают «да» и «нет», причём неясно, какое из них что обозначает. Есть ещё ряд подобных головоломок в книге «The Riddle of Scheherazade». Всё это разновидности широко известных задач о рыцарях и лжецах Смаллиана.

Одна из таких задач была освещена в фильме «Лабиринт»: есть 2 двери и 2 стражника, один всегда говорит правду, второй всегда лжёт. Одна дверь ведёт к замку, вторая — к гибели. Смысл головоломки состоит в том, чтобы узнать, какая дверь ведёт к замку, задав один вопрос одному стражнику. В фильме Сара спрашивала: «Скажет ли он [другой стражник] мне, что эта дверь ведёт к замку?»[3]

Булос предложил решение задачи в той же статье, где он и опубликовал саму задачу. Он заявил, что первым вопросом мы должны найти бога, который не является богом случая, то есть является либо богом правды, либо богом лжи. Есть множество вопросов, которые могут быть заданы для достижения этой цели. Одна из стратегий — использование сложных логических связей в самом вопросе.

Вопрос Булоса: «Означает ли „da“ „да“, если и только если ты бог правды, а бог B — бог случая?». Другой вариант вопроса: «Является ли нечётным число истинных утверждений в следующем списке: ты — бог лжи, „ja“ означает „да“, B — бог случая?»

Решение задачи может быть упрощено, если использовать условные высказывания, противоречащие фактам (counterfactuals)[4][5]. Идея этого решения состоит в том, что на любой вопрос Q, требующий ответа «да» либо «нет», заданный богу правды или богу лжи:

  • Если я спрошу тебя Q, ты ответишь «ja»?

Ответом будет «ja», если верный ответ на вопрос Q это «да», и «da», если верный ответ «нет». Для доказательства этого можно рассмотреть восемь возможных вариантов, предложенных самим Булосом.

  • Предположим, что «ja» обозначает «да», а «da» обозначает «нет»:
    • Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «да».
    • Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «нет».
    • Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «da». То есть правильный ответ на вопрос «ja», который обозначает «да».
    • Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «ja». То есть правильный ответ на вопрос «da», который обозначает «нет».
  • Предположим, что «ja» обозначает «нет», а «da» обозначает «да» , получим :
    • Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «да».
    • Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «нет».
    • Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «ja». Но, так как он лжёт, верный ответ на вопрос Q — «da», что означает «да».
    • Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «da». Но, так как он лжёт, верный ответ на вопрос Q — «ja», что означает «нет».

Используя этот факт, можно задавать вопросы:[4]

  • Спросим бога B: «Если я спрошу у тебя „Бог А — бог случая?“, ты ответишь „ja“?». Если бог B отвечает «ja», значит, либо он бог случая (и отвечает случайным образом), либо он не бог случая, а на самом деле бог A — бог случая. В любом варианте, бог C — это не бог случая. Если же B отвечает «da», то либо он бог случая (и отвечает случайным образом), либо B не бог случая, что означает, что бог А — тоже не бог случая. В любом варианте, бог A — это не бог случая.
  • Спросим у бога, который не является богом случая (по результатам предыдущего вопроса, либо A, либо C): «Если я спрошу у тебя: „ты — бог лжи?“, ты ответишь „ja“?». Поскольку он не бог случая, ответ  «da» обозначает, что он бог правды, а ответ «ja» обозначает, что он бог лжи.
  • Спросим у этого же бога «Если я у тебя спрошу: „Бог B — бог случая?“, ответишь ли ты „ja“?». Если ответ «ja» — бог B является богом случая, если ответ «da», то бог, с которым ещё не говорили, является богом случая.

Оставшийся бог определяется методом исключения.

  • T.S. Roberts, Some thoughts about the hardest logic puzzle ever (Journal of Philosophical Logic 30:609-612(4), December 2001).
  • Brian Rabern and Landon Rabern, A simple solution to the hardest logic puzzle ever (Analysis 68 (298), 105—112, April 2008).
  • Raymond Smullyan, What is the Name of This Book? (Prentice Hall, Englewood Cliffs, NJ, 1978).
  • Raymond Smullyan, The Riddle of Sheherazade (A. A. Knopf, Inc., New York, 1997).

ru.wikipedia.org

Логические задачи с ответами, задания для детей на логику и смекалку

Классические логические задачи

Вопросы, загадки, задачи на логику, смекалку и сообразительность — хороший набор для развития пытливости детского ума, любознательности и интереса к учебе, для полезного семейного досуга.

Регулярные тренировки в решении задач на логику помогают ребенку развивать нестандартное мышление. Текстовые логические задачи, задания на поиск закономерностей, выстраивание последовательностей особенно рекомендованы дошколятам и младшим школьникам.

Категории задач по возрасту с ответами и комментариями

Смотрите примеры задач на развитие логического мышления из Лаборатории LogicLike и решайте онлайн.

Интересные нестандартные задачи на логику

Занимательные сюжеты, привлекательные для детей картинки, обучающие подсказки и комментарии к ответам.

7 логических задач для разминки

logiclike.com

Самая сложная логическая задача в мире

Решение головоломок доставляет людям удовольствие: очень приятно осознавать, что именно вы только что нашли ответ на одну из самых сложных логических задач в мире. Однако это не единственная причина, почему нужно хоть иногда разгадывать головоломки. Об остальных причинах, о наиболее сложных логических задачах, пользе от их решения читайте в статье.

Самая сложная логическая головоломка

Наиболее трудная задача названа именно так. В народе ее именуют «Битвой людей и богов». Самая сложная логическая задача впервые была предложена философом и логиком из Соединенных Штатов Америки. Его зовут Джордж Булос. Весь свет узнал о данной головоломки после ее публикации в газете «Республика», которая издается в Италии. Это произошло в 1992 году.

Условие

Самая сложная логическая задача выглядит устрашающе с самого начала. Как записано ее условие? Допустим, существуют три бога, которые знают друг друга. Один из них является богом лжи, другой – истины, а третий – случая. Принято обозначать их буквами A, B и C, используя буквы в произвольном порядке.

Бог лжи всегда говорит только неправду, бог истины, наоборот, произносит только правдивые изречения. И наконец, бог случая может говорить как правду, так и неправду, при этом предугадать, что он сейчас скажет, нельзя.

Задача состоит в том, чтобы разобраться, кем является каждый бог. Для этого можно задать всего три вопроса. Самая сложная логическая задача подразумевает, что все эти вопросы можно адресовать как одному богу, так и каждому, но по очереди. Все зависит от полученных ответов. Вопросы должны подразумевать только утвердительный («Да») или отрицательный («Нет») ответ.

Указано, что боги понимают тот язык, на котором будут заданы вопросы, однако отвечают они на своем. Вы можете услышать либо слово Ja, либо Da. Неизвестно, какое из них означает «Нет», а какое – «Да».

Самая сложная логическая задача была опубликована вместе с несколькими подсказками к ее решению. Они звучат так:

  • Вопросы можно задавать по-разному: спросить что-то у каждого из богов или же не у всех.
  • Только после того, как ответ получен, можно задавать следующий вопрос.
  • Бог случая решает, какой дать ответ, при помощи монетки, находящейся у него в голове.
  • Существует такое понятие, как «вопрос-парадокс». Примером может послужить выражение: «Ты собираешься ответить «Ja»?» Так вот, подобные вопросы задавать нельзя.

Решение

Булос – логик и философ, который создал задачу, – в своей статье подсказал ход решения. Первое, что нужно сделать, – это вычислить бога истины или бога лжи. Для этого следует создать вопрос с комплексными логическими связями. Он должен звучать примерно так: «Будем считать, что ты – бог истины, B является богом случая, будет ли при этом Da означать «да»?» Конечно же, это не точная формулировка, это лишь приблизительный вариант. При помощи данного вопроса можно определить одного из богов. Далее все зависит от того, как задать еще два вопроса.

Судоку «Эскаргот»

Многие люди знакомы с играми, ориентированными на перестановку цифр в судоку. Решение такой головоломки – отличный способ устроить 5-минутную тренировку для мозга. Возможно, у вас неплохо получается решать японские судоку. Но сможете ли вы решить самую сложную задачу в своей группе?

AI Sudoku – алгоритм для создания сложного судоку, построенный математиком по имени Арто Инкала в 2012 году. В последнее время появляется все больше и больше ботов, но именно этот считается самым трудным. Он называется Escargot. Наряду с основной задачей можно найти 19 других сложных судоку, которые также были созданы ботом.

Чтобы найти решение самой сложной логической задачи-судоку в мире, необходимо выделить на это достаточное количество времени. Британское издание The Telegraph сообщило, что по шкале сложности судоку «Эскаргот» оценивается в 11 баллов, при том что привычные головоломки повышенной сложности «тянут» на 5.

Проблема узнавания

Михаил Моисеевич Бонгард, русский кибернетик, в 1967 году впервые опубликовал в своей книге пример логической головоломки под названием «Проблема узнавания». Однако очень сложные логические задачи Бонгарда получили популярность позже. Это случилось после того, как американский ученый Дуглас Хофштадтер написал о них в своей книге.

Чтобы найти решение «Проблемы узнавания», необходимо выявить определенную закономерность, или правило. Шесть изображений, которые находятся на левой странице, соответствуют этому правилу. Соответственно, изображения на правой странице не подходят под него.

Число стойкости

Мартин Гарднер – это американский математик, который является автором большого количества различных головоломок и задач. Наиболее известная из них – это поиск «числа стойкости». Суть состоит в том, чтобы за наименьшее количество шагов свести определенное число к одной цифре. Для этого необходимо последовательно перемножать составляющие числа.

Чаще всего примером решения служит «77». Свести его к одному числу можно за несколько шагов. 7*7=49, 4*9=36, 3*6=18, 1*8=8. Действие было произведено четыре раза, это и есть «число стойкости».

На специализированных информационных ресурсах соответствующей тематики публикуется много всевозможных головоломок, в том числе и самые сложные логические задачи — с ответами, подсказками, алгоритмами решений и т. д. Они всегда вызывают живой интерес, поэтому если вы хотите занять себя или своих друзей промозглым сырым вечером, воспользуйтесь такой возможностью или даже попробуйте придумать задание самостоятельно. Поверьте, находить «числа стойкости» — весьма увлекательное занятие.

Загадка для гениев

Согласно статистике, настоящие гении находят решение в течение десяти секунд. Если верить опросам, логические задачи — сложные, с подвохом — не вызывают особых трудностей у выпускников Гарварда, у них на данное задание уходит не более 40 секунд. К примеру, Билл Гейтс проходит этот тест на гениальность за 20 секунд. 15 процентов жителей Земли являются одаренными людьми, они находят решение за две минуты. А теперь посмотрите на эту картинку и догадайтесь, какая фигура здесь лишняя.

Ответ таков: фигура под номером один. Она не обладает общими признаками с остальными изображениями. Судите сами, у фигуры № 2 отсутствует белая рамка, а № 3 является единственным кругом. В то время как все остальные фигуры красные, № 4 – зеленая, а № 5 очевидно меньше других. Таким образом, только у фигуры под номером один нет ярких отличий от большинства изображений, в чем и состоит ее основное… отличие.

Островитяне

Другая интересная загадка тоже связана с ложью и истиной. Допустим, на острове живут сразу два племени. Лжецы всегда обманывают, а молодцы, наоборот, всегда говорят правду. Путешественник, встретивший островитянина, задал ему вопрос, чтобы узнать, кто он такой. Тот сказал, что является молодцом, и его наняли в проводники.

Во время путешествия путники увидели еще одного островитянина, который, судя по словам сопровождающего, тоже утверждал, что он молодец. Внимание, вопрос! Как определить, лжецом или молодцом был проводник?

Ответ звучит так: на этом острове все говорят, что они молодцы. Поскольку проводник правильно передал путешественнику ответ островитянина, то понятно, что он является молодцом.

Футбольные команды

Выше были представлены вашему вниманию как средние, так и очень сложные логические задачи. С ответами, прописанными в конце, решать их, конечно, проще. А чтобы напрячь мозг еще сильнее, можно создать себе дополнительные сложности: не записывать условие и попробовать найти верное решение в уме. Итак, вот еще одна головоломка.

Существует несколько футбольных команд. На турнирной таблице «Торпедо» занимает первое место, «Спартак» – пятое. «Динамо» находится посередине между этими двумя командами. Далее нужно быть очень внимательным: если «Спартак» будет опережен «Локомотивом», а «Зенит» займет место сразу после «Динамо», какая из пяти команд займет второе место? Дать ответ необходимо через 30 секунд. Он будет звучать так: «Локомотив».

Интернет-головоломки

Интернет можно назвать хранилищем головоломок. Но многие задачи требуют наличия простейших технических навыков, например, умения находить исходный код страницы для подсказок или изменять файлы изображений. Помните, что сложные логические задачи созданы для того, чтобы проверять ваш интеллект, а не тестировать на предмет знания компьютера.

Периодическая головоломка NSA

Агентство национальной безопасности обладает не самой хорошей репутацией, поскольку оно не раз подозревалось в шпионаже за интернет-пользователями и нарушениях конфиденциальности. Если не принимать это во внимание, можно найти достаточно сложные логические задачи с ответами на официальном сайте периодических головоломок. Ежемесячно появляются новые задания. Ответ опубликовывается через несколько дней после вопроса. Периодику NSA Puzzle запустили только в прошлом году, а это значит, что уже доступна коллекция, состоящая более чем из 12 головоломок.

Blue Eyes

Очень интересно работать над решением трудной загадки в течение нескольких дней или даже недель. Терпеливым людям подойдет самая сложная логическая задача в мире под названием Blue Eyes. Согласно XKCD – лучшей веб-платформе для вундеркиндов, она развивает логическое, математическое и латеральное мышление.

Создатель головоломки услышал ее совершенно случайно и опубликовал в Интернете. При этом он не использовал даже слов. Чтобы найти ключ к ее решению, необходимо прочитать загадку, пересказать ее и попробовать мысленно найти ответ на нее. Самая сложная логическая задача в мире очень увлекательна, она занимает все свободное время.

«101 Пазл в пятницу», или 101 головоломка Ричарда Уайзмена

Профессиональный психолог по имени Ричард Уайзман стал интернет-знаменитостью благодаря своему каналу на видеохостинге Youtube. Он публикует на нем различные иллюзии, фокусы и прочее. По пятницам мужчина делится в ​​своем блоге очередной головоломкой или загадкой. Чтобы решить их, необходимо сочетать линейное, латеральное и творческое мышление. Знаменитые головоломки со спичками, а также другие загадки и задачи на основе изображений можно найти в блоге психолога.

«Логические лабиринты», или головоломки Роберта Эббота

Роберт Эббот – программист, логик и разработчик игр. Известность пришла к нему после публикации «Логических лабиринтов», которые находятся в бесплатном доступе. Суть данной головоломки состоит в том, чтобы пройти лабиринт с заданными правилами.

Самую первую игру, к слову, самую простую, которая называется Easy Maze 1, необходимо преодолеть, не поворачивая налево.

Для чего нужны головоломки и логические задачи?

Головоломки и различные логические задачи обладают несколькими положительными качествами. Во-первых, они тренируют человеческий мозг, во-вторых, решать их очень интересно, а в-третьих, они позволяют развить в себе определенные черты характера.

Насколько полезными для детей могут быть головоломки?

  • Они развивать усидчивость у непоседливых ребят.
  • Они тренируют навыки решения задач.
  • Настойчивость – еще одно качество, которое развивают у детей головоломки. Ведь, как известно, головоломки сложно решить с первого раза, для этого нужно проявить терпение.
  • Улучшается координация рук и мелкая моторика, когда речь идет о головоломках вроде кубика Рубика.

Конечно, все самые важные качества характера закладываются в детях в раннем возрасте, и этому очень способствуют логические задачи. Однако они полезны и для взрослых людей, которые давно уже окончили школу. Мозг нужно тренировать точно так же, как и тело.

  • Чтобы клетки мозга старели медленнее и меньше, необходимо регулярно устраивать им процедуры для «омоложения», а именно выделять время для решения головоломок.
  • Логические задачи стимулируют мыслительные процессы. Ответы на сложнейшие жизненные вопросы придут намного быстрее, если регулярно тренировать мозг.
  • Происходит увеличение уровня серотонина. При этом улучшается настроение, но самое главное – кровеносные сосуды, которые питают мозг, начинают обновляться.
  • Улучшается память. С возрастом возникают проблемы с запоминанием дат, имен, дел. Кроссворды, головоломки и логические задачи лучше всего подходят для того, чтобы развить память.

fb.ru

Математические задачи на смекалку с ответами

Никто не рождается развитым и образованным. Чтобы в зрелом возрасте преуспевать, нужно немало потрудиться в детском и подростковом возрасте. Для этого родители учат с детьми стихотворения, читают книжки, развивают память, внимание, логику, тренируют мышление. Эта статья поможет вам найти упражнения и задачки для тренировки серого вещества головного мозга у детей различного возраста. Занимаясь с ребенком каждый день по 15 минут, вы подготовите отличный фундамент для его дальнейшей учебы, ведь логическое мышление – основа всех знаний и умений ребенка.

Математические задачи на логику для дошкольников

Начиная с 3 летнего возраста малыша, родители должны понемногу заниматься тренировкой логического мышления у своих детей. Детям это очень важно, ведь для них в таком возрасте многие очевидные вещи кажутся сложными, а непонятные для восприятия взрослым, напротив, очевидными. Представим несколько вариантов логических задач для детей 3-5 лет.

  1. На столе лежит 1 апельсин. Его разрезали на 2 части, сколько апельсинов лежит на столе? Ответ: 1, разрезанный.
  2. Собаку привязали к забору веревкой. Длина веревки составляет 10 метров, а собака прошла за день 100 метров. Как ей это удалось? Ответ: Собака ходила вдоль забора туда и обратно и «находила» целых 100 метров.
  3. Какой день недели соответствует числу 3? Ответ: среда, т.к. его порядковый номер в неделе – 3.

    Примечание: Про дни недели дошкольникам можно задавать различные варианты вопросов. Это поможет не только в развитии логического мышления, но и поможет скорее выучить дни недели.

  4. Посчитать, сколько людей в следующей строке: ты да я, да мы с тобой. Ответ: 2.
  5. Папа и сын, дедушка и внук, сын и папа. Сколько всего человек здесь отмечено? Ответ: 3, т.к. папа – сын дедушки, сын папы – внук дедушки.
  6. На опушке стояло 3 высоких сосны. На каждой сосне по 3 больших ветки и по 3 маленьких. На каждой маленькой ветке по яблоку. Сколько всего яблок на деревьях? Ответ: 0, на соснах яблоки не растут.
  7. Папу Антона зовут Андрей Викторович, а дедушку – Сергей Иванович. Какое отчество у мамы Антона? Ответ: Сергеевна, Потому что Сергей Иванович – это отец мамы Антона. Отца папы Антона зовут Виктор.
  8. У двух братьев по одной сестре. Сколько всего детей в семье? Ответ: 3. 2 брата и одна сестра на двоих.
  9. Какие камни есть в море? Ответ: мокрые.

    Примечание: аналогичная задача-загадка моет звучать так «Каких камней в море нет?» — ответ: сухих.

  10. Вася и Петя играли в морской бой и сыграли по 3 партии. Каждый выиграл по 3 раза. Это правда или ложь? Ответ: ложь. Во время одной партии выиграть может только один.
  11. В поле работали 5 тракторов. 2 трактора сломались и остановились. Сколько тракторов в поле? Ответ: 5, т.к. учитываются все тракторы, и рабочие, и сломанные.
  12. Одно яйцо варится 5 минут. Сколько времени нужно, чтобы сварить 2 яйца? Ответ: все те же 5 минут.
  13. Саша сидит в самолете. Впереди него машина, сзади – лошадь. Где находится Саша? Ответ: катается на карусели.
  14. Алена сидит, когда она встанет и уйдет, ее мама так и не сможет сесть на ее место. Где сидит Алена? Ответ: у мамы на коленях.
  15. Что все дети на земле делают одновременно? Ответ: взрослеют.

Опираясь на предложенные варианты заданий на развитие логического мышления, родители могут придумывать незамысловатые условия задач самостоятельно.

Математические задачи на логику: 1-2 класс

Но вот дети пошли в школу, буквально за первые месяцы учебы они начинают хорошо считать, ориентироваться в пространстве и времени. Задачки для дошкольников уже кажутся им простыми и неинтересными. Поэтому для таких деток мы приготовили несколько вариантов упражнений тренировки логики и смекалки, ориентируясь на их новые способности и возможности.

  1. Первоклассника попросили назвать самое большое число. Что он ответил?
    Ответ: 31. Первоклассники каждый день записывают число месяца в тетрадь, самое большое число в месяце – 31.
  2. На доске написаны два числа 4 и 5. Какой знак нужно поставить между ними, чтобы получился результат больше 4 и меньше 5. Ответ: запятая.
  3. По узкой дороге может проехать только одна машина. С одной стороны дороги находится гора. Одна машина едет с горы, другая – под гору. Как им разминуться? Ответ: обе машины едут в одном направлении и разминаться им не придется.
  4. Сколько раз из числа 10 можно отнять число 2? Ответ: один, т.к. уже после первого вычитания двойки останется число 8, а не 10.
  5. На столе стоят 6 стаканов: в первые три налили воду, вторые три – пустые. Нужно расставить стаканы так, чтобы чередовались пустые и полные стаканы, но при этом можно взять в руки только один стакан. Как поступить, чтобы выполнить условие? Ответ: Взять второй стакан и перелить из него воду в пятый стакан. Второй стакан поставить на прежнее место.
  6. За 10 часов 10 человек могут выкопать траншею длиной в 10 метров. Сколько нужно человек, чтобы они выкопали траншею диной в 100 метров за 100 часов? Ответ: 10 человек. На 1 час 10 человек выкопают 1 метр траншеи, за 10 часов они выкапывают 10 метров траншеи, а за 100 часов – 100 метров.
  7. Школьники участвуют в соревнованиях по бегу. Ваня занимает третью позицию, Антон занимает вторую позицию. Саша обгоняет Антона. Какую позицию занимает Саша? Ответ: вторую, т.к. впереди Антона тоже кто-то бежит и этот кто-то пока первый.
  8. Учитель положил на пол карандаш и попросил учеников перешагнуть через него, но никто не смог этого сделать. Почему? Ответ: карандаш лежит у стены и шагать детям некуда.
  9. Таня и Алиса пошли в магазин и нашли 2 рубля. Сколько бы денег они нашли, если бы с ними пошла еще и Марина? Ответ: 2 рубля, т.к. размер находки никак не зависит от количества ее нашедших.
  10. Из пункта А в пункт Б вышла кошка, а из пункта Б в пункт А вышла мышка. Когда они встретятся, кто из них будет ближе к пункту А, а кто к пункту Б? Ответ: они обе будут на одинаковом расстоянии от пункта А, и на одинаковом расстоянии от пункта Б.
  11. На столе стояли 3 чашки с чаем. Папа выпил чай из одной чашки и поставил ее на место. Мама выпила свой чай и тоже поставила чашку на место. Сколько чашек было на столе, когда пришел пить чай сын? Ответ: 3 чашки. Они хоть и пустые, но никуда со стола не делись.
  12. Марина шла из дома в школу и встретила трех мужиков. У каждого за спиной был мешок. У первого мужика в мешке был один кот, у второго в мешке был один кот и один пес. У третьего в мешке было 2 пса. Сколько всего котов направлялось в школу? Ответ: один, сама Марина. Мужики с мешками шли в обратную от школы сторону.
  13. В классе стоял стол с четырехугольной крышкой. Ученики отпилили один угол, что стало со столом, сколько углов осталось на крышке? Ответ: 5. Если отпилить один угол, то получим на его месте 2 новых, поэтому всего 5 углов.

    Примечание: на самом деле количество углов может зависеть и от того, как размышляет ребенок. Если он «пилит» стол по углам диагонали, т.е. распиливает его пополам, то вполне возможно, что у стола будет 3 угла. Если же один распил приходится на угол, а второй на сторону крышки, то может остаться и 4 угла. Но это нюансы, которые лучше рассматривать, рисуя на листе бумаги, где ребенок собирается «пилить» стол.

  14. На тарелке лежат 3 банана. Их нужно разделить между тремя девочками, чтобы на тарелке остался один банан. Ответ: одной девочке нужно отдать банан вместе с тарелкой.
  15. Какое слово зашифровано: ООО? Ответ: ТРИО, т.е. ТРИ О.

Родители тоже могут составлять свои задачи для детей, ориентируясь на предложенные варианты. Чем чаще ребенок будет заниматься упражнениями на логику, тем быстрее будет работать его мозг, тем выше будет успеваемость в школе.

Математические задачи на логику: 3-4 класс

Дальнейшее обучение в школе имеет свои особенности: дети научились складывать двузначные числа, совершать с ними различные математические операции, в том числе умножение, деление. Логические математические задачи для школьников 3-4 класса должны охватывать уже полученные знания и совершенствовать их качество.

  1. В кошельке лежит 15 копеек двумя монетами. Одна из монет не пятак, как такое может быть? Ответ: может, т.к. другая монета вполне может быть пятаком.
  2. Шла Маша в Волгоград, а навстречу ей 10 ребят. У каждого в руках по лукошку, в каждом лукошке по кошке, а у каждой кошки по котенку. Сколько всего ребят шло в Волгоград? Ответ: одна Маша. Все остальные, сколько бы их не перечисляли, шли навстречу девочке, а значит в противоположную сторону от Волгограда.
  3. Дедушка пилит бревна. Распил бревна пополам он делаем ан одну минуту. Сколько ему понадобится времени, чтобы распилить бревно на 10 частей? Ответ: 9 минут, т.к.чтобы распилить бревно на 10 частей, нужно сделать 9 распилов.
  4. Мальчик пришел в амбар. В каждом углу амбара стояло по 3 мешка. На каждом мешке сидело по кошке, у каждой кошки было по котенку. Сколько всего ног было в амбаре? Ответ: две, только мальчика.

    Примечание: Как бы долго дети не перемножали между собой числа-«ноги» кошек и котят, стоит помнить, что у кошек – лапы, а ноги – только у мальчика.

  5. Родители купили своим двум дочкам Маше и Лизе по коробке конфет. В каждой коробке было по 15 конфет. Маша съела несколько конфет и отложила коробку. А Лиза съела столько, сколько оставалось в коробке у Маши, и тоже отложила коробку. Вечером мама посчитала конфеты в коробках обеих девочек. Сколько конфет там было? Ответ: 15. Маша и Лиза съели вместе 15 конфет. Маша несколько (например, 15-х=у), а Лиза столько, сколько осталось у Маши (т.е. у конфет). Сумма х+у = 15. А у девочек было по 15 конфет, т.е. 2*15 = 30. Было 30, 15 съели, и 15 на двоих осталось. А сколько у кого – этого в задаче не уточняется.
  6. Из ГОРОНО в школу пришли проверяющие. Они выбрали класс для проверки, но не все дети были готовы отвечать урок. Тем не менее, на каждый вопрос учителя весь класс поднимал руку, и тот, кого учитель вызывал к доске, отвечал блестяще. Как получилось, что учитель угадывал, кого вызвать отвечать? Ответ: решением этой задачи есть небольшая хитрость. Перед уроком школьники и учитель договорились, что те, кто наверняка знают ответ на поставленный вопрос, будут поднимать правую руку. А те, кто не знают – левую. Благодаря маленькой хитрости класс достойно прошел проверку и никто ни о чем не догадался.
  7. Что у коровы находится спереди, а у быка сзади? Ответ: буква «К». Корова, быК.
  8. Когда маме исполнилось 31 год, дочери было 8. Сейчас мама старше дочери ровно в 2 раза. Сколько их обеим лет? Ответ: дочке 23, маме 46. Когда дочь родилась, маме было 31-8 = 23 года. Чтобы быть старше дочки в два раза, маме должно быть 23*2 = 46 лет. За это время дочь доросла до 23 лет.
  9. Две одноклассницы Наташа и Лена живут в одном подъезде: Лена на втором этаже, а Наташа на четвертом. Наташа поднимается по ступенькам на четвертый этаж и проходит 60 ступенек. Сколько ступенек проходит Лена, которая поднимается на второй этаж? Ответ: 20. Чтобы подняться с первого этажа на четвертый, нужно пройти три пролета. 60:3=20 ступенек в одном пролете. А Лена поднимается с первого на второй этаж и проходит при этом только один пролет, все те же 20 ступенек.
  10. Может ли страус называть себя птицей? Ответ: нет, не может. Страусы не умеют разговаривать.
  11. Какая физическая величина не имеет ни высоты, ни глубины, ни ширины, ни длины, но ее можно измерить? Ответ: время, температура.
  12. Задание на логику из серии «Юный Шерлок». На вызов о самоубийстве были вызваны представители уголовного розыска. В кабинете жертвы они обнаружили диктофон и включили его. На диктофоне была записана следующая фраза: «В моей смерти прошу никого не винить, жизнь не имеет смысла…» далее раздался выстрел. Как следователи поняли, что убийство сфабриковано? Ответ: убитый не мог перемотать запись на начало, это сделал кто-то другой.
  13. Что не может поместиться даже в самую большую кастрюлю? Ответ: ее крышка.
  14. В кастрюле налита вода до самого верха. Как отмерять жидкость, не используя никаких мерительных приспособлений, чтобы в кастрюле осталась только половина жидкости. Ответ: нужно наклонить кастрюлю и выливать воду до тех пор, пока не покажется с боковой части дно. Это и будет половина кастрюли.
  15. Когда цифра «2» означает «10»? Ответ: на циферблате цифра «2» соответствует «10 минутам».

С каждым годом задания на развитие логики и смекалки должны становится все сложнее, иметь подвохи, хитрости, чтобы ребенок учился размышлять, уделять внимание деталям. А регулярные и систематические занятия обязательно принесут свои плоды.

childage.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о