Строительство волоконно оптических линий связи – 6. Строительство и монтаж волоконно-оптических линий связи. Волоконно-оптические кабели и линии связи

Содержание

ВОЛС, всё про волоконно-оптические линии связи!

Самой высокой пропускной способностью среди всех существующих средств связи обладает оптическое волокно (диэлектрические волноводы). Волоконно-оптические кабели применяются для создания ВОЛС – волоконно-оптических линий связи, способных обеспечить самую высокую скорость передачи информации (в зависимости от типа используемого активного оборудования скорость передачи может составлять десятки гигабайт и даже терабайт в секунду).

Кварцевое стекло, являющееся несущей средой ВОЛС, помимо уникальных пропускных характеристик, обладает ещё одним ценным свойством – малыми потерями и нечувствительностью к электромагнитным полям. Это выгодно отличает его от обычных медных кабельных систем.

Данная система передачи информации, как правило, используется при постройке рабочих объектов в качестве внешних магистралей, объединяющих разрозненные сооружения или корпуса, а также многоэтажные здания. Она может использоваться и в качестве внутреннего носителя структурированной кабельной системы (СКС), однако законченные СКС полностью из волокна встречаются реже – в силу высокой стоимости строительства оптических линий связи.

Применение ВОЛС позволяет локально объединить рабочие места, обеспечить высокую скорость загрузки Интернета одновременно на всех машинах, качественную телефонную связь и телевизионный приём.

Преимущества ВОЛС

При грамотном проектировании будущей системы (этот этап подразумевает решение архитектурных вопросов, а также выбор подходящего оборудования и способов соединения несущих кабелей) и профессиональном монтаже применение волоконно-оптических линий обеспечивает ряд существенных преимуществ:

  • Высокую пропускную способность за счёт высокой несущей частоты. Потенциальная возможность одного оптического волокна – несколько терабит информации за 1 секунду.
  • Волоконно-оптический кабель отличается низким уровнем шума, что положительно сказывается на его пропускной способности и возможности передавать сигналы различной модуляции.
  • Пожарная безопасность (пожароустойчивость). В отличие от других систем связи, ВОЛС может использоваться безо всяких ограничений на предприятиях повышенной опасности, в частности на нефтехимических производствах, благодаря отсутствию искрообразования.
  • Благодаря малому затуханию светового сигнала оптические системы могут объединять рабочие участки на значительных расстояниях (более 100 км) без использования дополнительных ретрансляторов (усилителей).

  • Информационная безопасность. Волоконно-оптическая связь обеспечивает надёжную защиту от несанкционированного доступа и перехвата конфиденциальной информации. Такая способность оптики объясняется отсутствием излучений в радиодиапазоне, а также высокой чувствительностью к колебаниям. В случае попыток прослушки встроенная система контроля может отключить канал и предупредить о подозреваемом взломе. Именно поэтому ВОЛС активно используют современные банки, научные центры, правоохранительные организации и прочие структуры, работающие с секретной информацией.
  • Высокая надёжность и помехоустойчивость системы. Волокно, будучи диэлектрическим проводником, не чувствительно к электромагнитным излучениям, не боится окисления и влаги.
  • Экономичность. Несмотря на то, что создание оптических систем в силу своей сложности дороже, чем традиционных СКС, в общем итоге их владелец получает реальную экономическую выгоду. Оптическое волокно, которое изготавливается из кварца, стоит примерно в 2 раза дешевле медного кабеля, дополнительно при строительстве обширных систем можно сэкономить на усилителях. Если при использовании медной пары ретрансляторы нужно ставить через каждые несколько километров, то в ВОЛС это расстояние составляет не менее 100 км. При этом скорость, надёжность и долговечность традиционных СКС значительно уступают оптике.

  • Срок службы волоконно-оптических линий составляет полрядка четверти века. Через 25 лет непрерывного использования в несущей системе увеличивается затухание сигналов.
  • Если сравнивать медный и оптический кабель, то при одной и той же пропускной способности второй будет весить примерно в 4 раза меньше, а его объём даже при использовании защитных оболочек будет меньше, чем у медного, в несколько раз.
  • Перспективы. Использование волоконно-оптических линий связи позволяет легко наращивать вычислительные возможности локальных сетей благодаря установке более быстродействующего активного оборудования, причем без замены коммуникаций.

Область применения ВОЛС

Как уже было сказано выше, волоконно-оптические кабели (ВОК) используются для передачи сигналов вокруг (между) зданий и внутри объектов. При построении вешних коммуникационных магистралей предпочтение отдаётся оптическим кабелям, а внутри зданий (внутренние подсистемы) наравне с ними используется традиционная витая пара. Таким образом, различают ВОК для внешней (outdoor cables) и внутренней (indoor cables) прокладки.

К отдельному виду относятся соединительные кабели: внутри помещений они используются в качестве соединительных шнуров и коммуникаций горизонтальной разводки – для оснащения отдельных рабочих мест, а снаружи – для объединения зданий.

Монтаж волоконно-оптического кабеля осуществляется с помощью специальных инструментов и приборов.

Технологии соединения ВОЛС

Длина коммуникационных магистралей ВОЛС может достигать сотен километров (например, при постройке коммуникаций между городами), тогда как стандартная длина оптических волокон составляет несколько километров (в том числе потому, что работа со слишком большими длинами в некоторых случаях весьма неудобна). Таким образом, при построении трассы необходимо решить проблему сращивания отдельных световодов.

Различают два типа соединений: разъёмные и неразъёмные. В первом случае для соединения применяются оптические коннекторы (это связано с дополнительными финансовыми затратами, и, кроме того, при большом количестве промежуточных разъёмных соединений увеличиваются оптические потери).

Для неразъёмного соединения локальных участков (монтажа трасс) применяются механические соединители, клеевое сращивание и сваривание волокон. В последнем случае используют аппараты для сварки оптических волокон. Предпочтение тому или иному методу отдаётся с учётом назначения и условий применения оптики.

Наиболее распространённой является технология склеивания, для которой используется специальное оборудование и инструмент и которая включает несколько технологических операций.

В частности, перед соединением оптические кабели проходят предварительную подготовку: в местах будущих соединений удаляются защитное покрытие и лишнее волокно (подготовленный участок очищается от гидрофобного состава). Для надёжной фиксации световода в соединителе (коннекторе) используется эпоксидный клей, которым заполняется внутреннее пространство коннектора (он вводится в корпус разъёма с помощью шприца или дозатора). Для затвердевания и просушки клея применяется специальная печка, способная создать температуру 100 град. С.

После затвердевания клея излишки волокна удаляются, а наконечник коннектора шлифуется и полируется (качество скола имеет первостепенное значение). Для обеспечения высокой точности выполнение данных работ контролируется с помощью 200-кратного микроскопа. Полировка может осуществляться вручную или с помощью полированной машины.

Самое качественное соединение с минимальными потерями обеспечивает сваривание волокон. Этот метод используется при создании высокоскоростных ВОЛС. Во время сваривания происходит оплавление концов световода, для этого в качестве источника тепловой энергии могут использоваться газовая горелка, электрический заряд или лазерное излучение.

Каждый из методов имеет свои преимущества. Лазерная сварка благодаря отсутствию примесей позволяет получать самые чистые соединения. Для прочной сварки многомодовых волокон, как правило, используют газовые горелки. Наиболее распространенной является электрическая сварка, обеспечивающая высокую скорость и качество выполнения работ. Длительность плавления различных типов оптовых волокон отличается.

Для сварочных работ применяются специальный инструмент и дорогостоящее сварочное оборудование – автоматическое или полуавтоматическое. Современные сварочные аппараты позволяют контролировать качество сварки, а также проводить тестирование мест соединения на растяжение. Усовершенствованные модели оснащены программами, которые позволяют оптимизировать процесс сварки под конкретный тип оптоволокна.

После сращения место соединения защищается плотно насаживаемыми трубками, которые обеспечивают дополнительную механическую защиту.

Ещё один метод сращивания элементов оптоволокна в единую линию ВОЛС – механическое соединение. Этот способ обеспечивает меньшую чистоту соединения, чем сваривание, однако затухание сигнала в данном случае всё-таки меньше, чем при использовании оптических коннекторов.

Преимущество этого метода перед остальными состоит в том, что для проведения работ используются простые приспособления (например, монтажный столик), которые позволяют проводить работы в труднодоступных местах или внутри малогабаритных конструкций.

Механическое сращивание подразумевает использование специальных соединителей – так называемых сплайсов. Существует несколько разновидностей механических соединителей, которые представляют собой вытянутую конструкцию с каналом для входа и фиксации сращиваемых оптических волокон. Сама фиксация обеспечивается с помощью предусмотренных конструкцией защёлок. После соединения сплайсы дополнительно защищаются муфтами или коробами.

Механические соединители могут использоваться неоднократно. В частности, их применяют во время проведения ремонтных или восстановительных работ на линии.

ВОЛС: типы оптических волокон

Оптические волокна, используемые для построения ВОЛС, отличаются по материалу изготовления и по модовой структуре света. Что касается материала, различают полностью стеклянные волокна (со стеклянной сердцевиной и стеклянной оптической оболочкой), полностью пластиковые волокна (с пластиковой сердцевиной и оболочкой) и комбинированные модели (со стеклянной сердцевиной и с пластиковой оболочкой). Самую лучшую пропускную способность обеспечивают стеклянные волокна, более дешёвый пластиковый вариант используют в том случае, если требования к параметрам затухания и пропускной способности не критичны.

По типу путей, которые проходит свет в сердцевине волокна, различают одно- и многомодовые волокна (в первом случае распространяется один луч света, во втором – несколько: десятки, сотни и даже тысячи).

  • Одномодовые волокна (SM) отличаются малым диаметром сердцевины, по которой может пройти только один пучок света.

  • Многомодовые волокна (MM) отличаются большим диаметром сердцевины и могут быть со ступенчатым или градиентным профилем. В первом случае пучки света (моды) расходятся по различным траекториям и поэтому приходят к концу световода в различное время. При градиентном профиле временные задержки различных лучей практически полностью исчезают, и моды идут плавно благодаря изменению скорости распространения света по волнообразным спиралям.

 

Все современные ВОК (и одно-, и многомодовые), с помощью которых создаются линии передачи данных, имеют одинаковый внешний диаметр – 125 мкм. Толщина первичного защитного буферного покрытия составляет 250 мкм. Толщина вторичного буферного покрытия составляет 900 мкм (используется для защиты соединительных шнуров и внутренних кабелей). Оболочка многоволоконных кабелей для удобства работы окрашивается в различные цвета (для каждого волокна).

 

Диагностика волоконно-оптических линий связи

Основным инструментом для диагностики волоконно-оптических линий связи является оптический рефлектометр. Пример работы с таким прибором смотрите в следующем видео:

Посмотреть примеры оборудования и статьи по теме ВОЛС на fibertop.ru.

 

Примеры оборудования

 

Материал подготовлен
техническими специалистами компании “СвязКомплект”.

skomplekt.com

Строительство ВОЛС — ВолсТек

Спецификация работ на строительство ВОЛС в помещениях
Артикул Наименование Кол-во Ед. изм. Цена Сумма
Строение 1
1 5204.0 Монтаж 19″ оборудования, юнит шт
2 5204.1 Монтаж 19″ габаритного оборудования, юнит шт
 
3 5210.1 Разделка бронированного волоконно-оптического кабеля (более 8 волокон) 1 шт
4 5210.0 Разделка бронированного волоконно-оптического кабеля (до 8 волокон) 1 шт
5 5211 Сварка оптических волокон шт
 
6 5209.1 Разделка небронированного волоконно-оптического кабеля (более 8 волокон) шт
7 5211 Сварка оптических волокон шт
 
8 4105.5 Трассировка волоконно-оптического кабеля (размотка, маркировка, замер длины, и т.д.) м
9 4102.5.0 Укладка кабеля волоконно-оптического, в короб, на лоток м
 
Строение 7
10 5204.0 Монтаж 19″ оборудования, юнит шт
11 5204.1 Монтаж 19″ габаритного оборудования, юнит шт
 
12 5210.0 Разделка бронированного волоконно-оптического кабеля (до 8 волокон) шт
13 5211 Сварка оптических волокон шт
 
Строение 8
14 5204.0 Монтаж 19″ оборудования, юнит шт
15 5204.1 Монтаж 19″ габаритного оборудования, юнит шт
 
16 5210.0 Разделка бронированного волоконно-оптического кабеля (до 8 волокон) шт
17 5211 Сварка оптических волокон шт
 
Строение 9
18 5204.0 Монтаж 19″ оборудования, юнит шт
19 5204.1 Монтаж 19″ габаритного оборудования, юнит шт
 
20 5210.0 Разделка бронированного волоконно-оптического кабеля (до 8 волокон) шт
21 5211 Сварка оптических волокон шт
 
Строение 2
22 5204.0 Монтаж 19″ оборудования, юнит шт
23 5204.1 Монтаж 19″ габаритного оборудования, юнит шт
 
24 5210.1 Разделка бронированного волоконно-оптического кабеля (более 8 волокон) шт
25 5210.0 Разделка бронированного волоконно-оптического кабеля (до 8 волокон) шт
26 5211 Сварка оптических волокон шт
 
27 5209.0 Разделка небронированного волоконно-оптического кабеля (до 8 волокон) шт
28 5211 Сварка оптических волокон шт
 
29 5209.0 Разделка небронированного волоконно-оптического кабеля (до 8 волокон) шт
30 5211 Сварка оптических волокон шт
 
31 4105.5 Трассировка волоконно-оптического кабеля (размотка, маркировка, замер длины, и т.д.) м
32 4102.5.0 Укладка кабеля волоконно-оптического, в короб, на лоток м
 
Строение 3
33 5204.0 Монтаж 19″ оборудования, юнит шт
34 5204.1 Монтаж 19″ габаритного оборудования, юнит шт
 
35 5210.0 Разделка бронированного волоконно-оптического кабеля (до 8 волокон) шт
36 5211 Сварка оптических волокон шт
 
37 5208.1 Кроссирование соединений патч-кордами шт
Строение 4
38 5204.0 Монтаж 19″ оборудования, юнит шт
39 5204.1 Монтаж 19″ габаритного оборудования, юнит шт
 
40 5210.0 Разделка бронированного волоконно-оптического кабеля (до 8 волокон) шт
41 5211 Сварка оптических волокон шт
 
Строение 5
42 5204.0 Монтаж 19″ оборудования, юнит шт
43 5204.1 Монтаж 19″ габаритного оборудования, юнит шт
 
44 5210.0 Разделка бронированного волоконно-оптического кабеля (до 8 волокон) шт
45 5211 Сварка оптических волокон шт
 
46 5209.0 Разделка небронированного волоконно-оптического кабеля (до 8 волокон) шт
47 5211 Сварка оптических волокон шт
 
48 4105.5 Трассировка волоконно-оптического кабеля (размотка, маркировка, замер длины, и т.д.) м
49 4103.5.0 Укладка кабеля волоконно-оптического, открыто м
 
 
50 5305.1 Составление отчета тестирования волоконно-оптических кабелей связи (1 волокно) шт
51 5303.0 Тестирование волоконно-оптических соединений  (1 волокно, менее 20 волокон) шт
 
52 99103 Сопроводительные работы шт
53 99107 Выпуск исполнительной документации шт
Итого монтаж

volstech.ru

Руководство по строительству линейных сооружений магистральных и внутризоновых оптических линий связи

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

files.stroyinf.ru

ТТК. Строительство и монтаж волоконно-оптических линий связи (ВОЛС). Сращивание оптических волокон (ОВ),

СТРОИТЕЛЬСТВО И МОНТАЖ ВОЛОКОННО-ОПТИЧЕСКИХ ЛИНИЙ СВЯЗИ (ВОЛС)

 СРАЩИВАНИЕ ОПТИЧЕСКИХ ВОЛОКОН (ОВ)

1. ОБЛАСТЬ ПРИМЕНЕНИЯ


Типовая технологическая карта разработана на сращивание оптических волокон.

Общие сведения

Особенности и организация строительства ВОЛС


Общая информация, относящаяся к прокладке кабелей электросвязи, приведена в руководстве МСЭ-Т «Технология линейно-кабельных сооружений для сетей общего пользования». В нем содержится только информация особо важного значения или относящаяся исключительно к волоконно-оптическим кабелям линий связи.

Волоконно-оптические кабели имеют более низкие предельные нагрузки, чем металлические кабели, и при определенных обстоятельствах могут потребоваться специальные меры предосторожности и мероприятия, позволяющие обеспечить их успешную прокладку. Это относится, в основном, к изгибам и натяжению оптических кабелей (ОК). При строительстве важно обращать особое внимание на рекомендации изготовителя, приведенные в ТУ, и установленные физические ограничения, а также не превышать заданные нормы нагрузки для любого конкретного кабеля. Повреждение, вызванное чрезмерной нагрузкой в процессе прокладки, может проявиться не сразу, однако оно может привести к отказу в процессе эксплуатации кабеля.

Минимальный радиус изгиба и максимальное натяжение являются критическими параметрами. Допустимые значения минимального радиуса изгиба и максимального натяжения различны для прокладки и последующего периода эксплуатации. Увеличивающееся натяжение сначала вызывает обратимое увеличение затухания, затем — необратимое и, наконец, может привести к повреждению волокна. При прокладке допускается большее значение натяжения, чем при эксплуатации. Минимальный радиус изгиба при прокладке, напротив, больше аналогичной величины, допустимой для последующей стадии, так как при увеличении нагрузки растет допустимое значение этого параметра. Поскольку во время прокладки кабель находится под нагрузкой, следовательно, и радиус кривизны должен быть больше. Допустимый после завершения прокладки радиус изгиба зависит от растягивающей нагрузки.

Значения минимального радиуса изгиба и максимальной нагрузки для кабелей внутренней прокладки (внутриобъектовых ОК) во время прокладки и во время эксплуатации ОК приведены в табл.1.1.

Таблица 1.1


Минимальный радиус изгиба и максимальное растягивающее усилие внутриобъектового ОК

Параметр

Условия, для которых он нормируется

Размерность

Значение параметра

Растягивающее усилие

При прокладке

Н

400

После прокладки

50

Минимальный радиус изгиба

При прокладке без натяжения

мм

150

После прокладки без натяжения

30

После прокладки при полном натяжении

130



Строительство волоконно-оптических линий связи так же, как и электрических кабельных линий связи, осуществляется строительно-монтажными управлениями (СМУ), а также передвижными механизированными колоннами (ПМК), в системе которых организуются линейные или прорабские участки. Силами этих участков выполняется разбивка трассы линии и определение мест установки НРП на местности в соответствии с проектом на строительство, доставка кабеля, оборудования и других материалов на кабельную трассу, испытание, прокладка и монтаж кабеля и оконечных устройств, проведение приемосдаточных испытаний.

Организация, технология проведения линейных и монтажных работ имеет ряд отличий по сравнению с работами на традиционных электрических кабелях связи. Эти отличия в значительной степени обусловлены отсутствием параметров, характеризующих состояние элементов кабельного сердечника и его защитных покровов (сопротивление и электрическая прочность изоляции, герметичность оболочки), а также своеобразием конструкции ОК: критичностью к растягивающим усилиям; малыми поперечными размерами и массой; большими строительными длинами; сравнительно большими величинами затухания сростков ОВ; трудностями в организации служебной связи в процессе строительства волоконно-оптических линий связи (ВОЛС) с ОК без металлических элементов; недостаточным развитием методов и отсутствием доступных по цене серийно выпускаемых приборов для измерений и отыскания повреждений на ОК.

Потери при соединении волокон


Для соединения различных частей оптических телекоммуникационных систем производят в основном кабели стандартной длины, например 2, 4, 6 км. Для информационных систем всегда существует необходимость соединения строительных длин кабеля между собой, так как только на коротких участках длиной 2-6 км можно использовать одну строительную длину кабеля. ВОЛС большой длины состоят из некоторого количества строительных длин по 2-6 км каждая, которые могут соединяться между собой различными способами:

— постоянные соединения — это сварные соединения, используемые в основном для соединения волокон в сетях большой протяженности, и механические соединения, преимущественно используемые в сетях локальной инсталляции;

— полупостоянные соединения, преимущественно используемые в сетях, где абоненты перемещают оборудование или, где вся сеть постоянно перестраивается, т.е. в локальных сетях LAN, а также при установлении временных соединений во время организации кабельных вставок во время аварий на магистральных и соединительных ВОЛС.

Разъемный соединитель (разъем, коннектор) — устройство для подключения волокна к источнику, детектору или к другому волокну. В его конструкции заложена возможность многократного подключения и отключения волокна. Неразъемный соединитель (сплайс, «сварка») предназначен для постоянного соединения одного волокна с другим. Некоторые производители предлагают многоразовые сплайсы, позволяющие разрывать соединение или переконфигурировать волоконную цепь.

Ключевым моментом волоконно-оптического соединения является точное размещение сердцевин ОВ (или несущих свет областей в одномодовом волокне) для обеспечения максимально полной передачи света от одного волокна к другому. При этом необязателен непосредственный контакт между волокнами. Условие точного размещения тонких волокон (одно относительно другого) ставит перед производителями соединителей сложную задачу. Например, при соединении двух ОВ с диаметром оболочки 125 мкм их юстировку в процессе сварки выполняют с точностью в несколько тысячных миллиметра и даже лучше. Поэтому требования, предъявляемые к соединителям и коннекторам, могут быть сформулированы в виде:

— установка соединителей должна приводить к небольшим потерям оптической мощности на соединении;

— соединители должны легко и быстро устанавливаться, не требуя дорогостоящего оборудования или длительного обучения персонала;

— разъем должен гарантировать многократное подключение и отключения без каких-либо изменений уровня потерь;

— потери должны быть регламентированы вне зависимости от времени установки соединителя;

— цена соединителей и оборудования для их установки должна быть невысокой.

Исходя из этих факторов, техника соединения методом сварки используется, в основном, на сетях большой протяженности, где требования к качеству соединения и его затуханию особенно строги. Механические соединители используются, как правило, при прокладке оптического кабеля внутри помещений. Безусловно, потери, вносимые сварным соединением, значительно меньше, нежели при механическом соединении, а дорогой коннектор обладает меньшим затуханием, чем дешевый.

Согласно накопленного опыта требования к потерям на соединителе следующие:

— 0,2 дБ и менее для телекоммуникационных систем или для дальних линий связи;

— 0,3-1 дБ для соединителей, используемых в контуре внутри здания: для локальных сетей или линий управления производством;

— 1-3 дБ для соединителей в системах, где такого рода потери приемлемы и основным соображением выступает низкая стоимость. В таких системах, как правило, используется пластиковое волокно.

Как известно, существуют три причины возникновения потерь в волоконно-оптическом соединении:

— внутренние причины, связанные с нестабильностью параметров самого волокна;

— внешние причины, связанные непосредственно с соединителем;

— системный фактор, отражающий параметры системы в целом.

Внутренние причины. Рассматривая соединение одного волокна с другим, исходят из того, что оба волокна идентичны. Однако обычно это не так. Производство волокон оставляет некоторые допуски на воспроизводимость их параметров, варьирующихся в установленных пределах вблизи номинальных (специфицированных) значений. Потери в волокне обусловлены различием: диаметров модового поля, числовых апертур, диаметров сердцевины, диаметров оболочек, некруглостью сердцевины и/или оболочки; неконцентричностью сердцевины/оболочки.

На рис.1 схематически представлены вариации параметров соединяемых волокон, наиболее важных с точки зрения их влияния на потери.


Рис.1. Схематически представленные вариации параметров соединяемых волокон, наиболее важных с точки зрения их влияния на потери



Если диаметр сердцевины передающего волокна отличается от диаметра сердцевины приемного волокна, диаметр модового поля тоже будет шире или уже. В этом случае затухание сигнала изменяется в обоих направлениях, и определяется опытным путем с помощью рефлектометра при прохождении сигнала в одном из направлений. Соединение волокон с различными диаметрами модового поля дают неожиданные результаты в затухании сигнала (рис.1, а).

Если передающее волокно имеет большую числовую апертуру, чем приемное волокно, то возникают потери. Свет будет излучаться в оболочку приемного волокна (рис.1, б). Когда передающего волокна больше, чем приемного волокна, потери можно рассчитать по формуле:

. (1)


Когда диаметр сердцевины передающего волокна больше, чем диаметр сердцевины приемного волокна, будут происходить потери, обусловленные тем, что некоторое количество света из передающего волокна вытекает в оболочку приемного волокна. Различие в диаметрах сердцевин также влияет на диаметр модового поля (рис.1, в). Потери, обусловленные различием диаметров сердцевин соединяемых волокон, рассчитываются по формуле:

. (2)


При производстве волокна допуски на диаметр оболочки составляют ±2 мкм. Это означает, что волокно с диаметром 123 мкм может соединяться с волокном диаметром 127 мкм. При соединении методом сварки вязкость расплава обеспечивает относительно правильно съюстированные друг относительно друга волокна, но при механическом или полупостоянном соединении эти различия могут дать значительное возрастание потерь, особенно для одномодовых волокон (рис.1, г). Особо большие потери возникают при соединении волокон с максимально большим различием диаметров оболочек. Для волокон с допуском 125±2 мкм максимальные потери составляют 1,4 дБ. Если допуск является ниже 125±1 мкм, максимальные потери снижаются до 0,7 дБ. Если кабели, содержащие одномодовые оптические волокна, оконцованны коннекторами, волокна и коннекторы должны быть очень точно съюстированны друг с другом, чтобы снизить потери из-за различия диаметров оболочек.

Некруглость сердцевины и оболочки могут оказывать такое же влияние, как и различие в диаметре сердцевины. Это влияние особенно очевидно в полупостоянных соединителях, где коннектор не имеет направляющих пазов, например SMA коннектор. В результате некруглость приведет к потерям во время каждого соединения (рис.1, д).

Сердцевина волокна должна размещаться прямо в центре волокна. Неконцентричность приведет к потерям в соединении (рис.1, е).

Внешние причины. Сами соединители также привносят определенные потери в соединение. Если центральные оси двух волокон недостаточно точно совмещены, потери возникают даже при отсутствии вариаций характеристик волокон.

Четыре основные причины возникновения потерь в соединителе, которые необходимо контролировать, это радиальное смещение, продольное смещение, угловое рассогласование ориентации осей, гладкость поверхности скола.

Радиальное смещение. Волокно в соединителе должно размещаться вдоль его центральной оси. Если центральная ось одного волокна не совпадает с центральной осью другого, то неизбежно возникновение потерь. Зависимость потерь от отношения абсолютной величины смещения к диаметру волокна 2 представлена на графике рис.2. Из графика видно, что относительное смещение в 10% приводит к потерям на уровне 0,5 дБ. Для волокна с диаметром сердцевины 50 мкм относительное смещение в 10% означает реальное смещение на уровне в 5 мкм, что, в свою очередь, соответствует смещению в каждом соединителе на 2,5 мкм. Очевидно, что контроль бокового смещения особенно затруднен в волокнах малого диаметра. Производители соединителей стремятся ограничить смещение до уровня менее 5% от диаметра ядра.


Рис.2. Потери от бокового смещения волокон



Продольное смещение. Соединение двух волокон, разделенных небольшим зазором, подвержено двум видам потерь (рис.3). Первый — это френелевское отражение, связанное с разницей показателей преломления волокон и среды в зазоре (обычно воздуха). Френелевское отражение происходит как на выходе из первого волокна, так и на входе во второе волокно. В стеклянных волокнах, разделенных воздушным зазором, потери от френелевского отражения составляют около 0,34 дБ. Френелевские потери могут быть существенно снижены при использовании в зазоре жидкости с согласованным показателем преломления. Такая жидкость представляет собой либо оптически прозрачную среду, либо гель, имеющий показатель преломления, близкий к показателю преломления стекла.


Рис.3. Потери от зазора между сколами



Второй вид потерь в многомодовых волокнах связан с потерей мод высокого порядка при прохождении светом зазора и на входе в сердцевину второго волокна. Свет, выходящий из первого волокна, распространяется в некотором конусе. Величина потерь, связанных с этим эффектом, зависит от величины NA волокон. Волокно с большим значением NA не допускает столь большого зазора между волокнами при том же уровне потерь, что волокно с меньшим значением NA.

Для уменьшения потерь волокна следует соединять вплотную. В большинстве неразъемных соединителей волокна действительно устанавливаются вплотную. В разъемах иногда нужен небольшой зазор для предотвращения появления царапин на сколе при подключении. Волокна, прижатые друг к другу с большим усилием при подключении соединителя, могут даже потрескаться. Поэтому некоторые соединители сконструированы таким образом, чтобы был небольшой зазор между волокнами, в других используется фиксированное прижимающее давление для мягкого контакта волокон, исключающего появление повреждений. Физический контакт волокон часто необходим для регулирования обратных отражений, которые обсуждаются ниже в этой главе.

Угловое рассогласование ориентации осей. Сколы обработанных волокон должны быть перпендикулярны осям волокон и параллельны друг другу при соединении. Потери (рис.4) связаны с угловым рассогласованием ориентации волокон относительно друг друга. Снова, как и ранее, уровень потерь определяется NA волокон. Влияние NA в данном случае противоположно эффекту наличия зазора между волокнами. Большее значение NA допускает большее угловое рассогласование для ограничения потерь на том же уровне, что и при меньшем значении апертуры.


Рис.4. Потери от углового рассогласования ориентации осей

docs.cntd.ru

Строительство волоконно-оптических линий связи. Преимущества ВОЛС — ЗАО «СИ»

Строительство волоконно-оптических линий связи

Преимущества ВОЛС

На данный момент наша страна как никогда остро нуждается в качественных и высокопроизводительных сетях связи. Все имеющиеся линии уже давно устарели, а технический прогресс не стоит на месте и требует все больших скоростей передачи цифровой информации между регионами. Телефон, телевидение и интернет уже давно превратились в предметы первой необходимости. И качество обеспечения районов данными услугами влияет, в первую очередь, на их экономическую и социальную привлекательность. Это означает, что промышленное и экономическое развитие регионов во многом зависят от линий связи.

Имеющаяся инфраструктура линий связи уже давно устарела. Традиционные металлические кабели давно не обеспечивают всего объема потребностей в качестве и количестве передаваемой информации. К тому же кабели давно изношены и отработали свой срок эксплуатации. В результате сеть постоянно выходит из строя и её приходится ремонтировать. Каждый ремонт влечет новые затраты, которые, к слову, довольно значительные. Поэтому все больше операторов обращаются к полной реконструкции сетей или даже строительству новых с помощью современных технологий.

Наиболее широко в плане строительства современных сетей связи используются технологии беспроводных и оптоволоконных сетей. Беспроводные сети обеспечивают удобство и широту покрытия, однако, применять их можно не везде, да и технология эта по-прежнему остается довольно дорогой. Метод сетей прокладки волоконно-оптических более экономичен, эргономичен и совмещает в себе несколько возможных технологий прокладки сети, которые дают возможность прокладывать кабели практически в любых условиях.

Основой оптико-волоконных линий связи составляют оптические кабели и волоконные оптические системы передачи (или ВОЛП). Оптические кабели во многом превосходят свои традиционные аналоги. Они обладают большей устойчивостью, надежностью, широкой полосой пропускания, их удобно монтировать, легко ремонтировать, а срок их службы может составлять около 25 лет. Такие кабели возможно использовать не только для организации городских или междугородних телефонных линий, но и для подключения кабельного телевидения, радиовещания, высокоскоростного интернете, видео телефонирования, технологической и ведомственной связи и др.

Более широкая полоса пропускания оптико-волоконных линий связи обеспечивает передачу значительно больших, по сравнению с традиционными линиями, объемов информации. Также сохраняется высокое качество сигнала. И это при гораздо меньших затратах.

Каждая система связи оценивается по следующим основным факторам:

— показатель информационной емкости системы – выражается числом связных каналов или значением скорости передачи информации, приведенным в бит\с.;

— затухание сигнала – определяется максимальной длиной регенерационного участка;

— стойкость к негативным воздействиям окружающей среды.

Основополагающей силой, продвинувшей развитие волоконно-оптических систем вперед, явилось изобретение квантового оптического генератора – или лазера. Лазерные системы обладают значительно большим волновым диапазоном. Если обычные кабельные линии связи работают с частотой в несколько мегагерц, а волноводы – в несколько гигагерц, то оптическое волокно, в основе которого видимый и инфракрасный спектр оптического диапазона, способно работать с частотами в сотни гигагерц.

Направляющей системой ВОЛС являются волноводы диэлектрические. Их (волноводы) кроме того называют оптическими волокнами, соответственно их небольшим размерам и методу получения. Волокна также совершенствовались со времени их появления, росла полоса пропускания и велись работы по снижению потерь. Развитие технологии шло успешно, поэтому волокна стали все больше применяться в организации кабельных сетей связи.

По сравнению с традиционными кабельными сетями ВОЛС имеют ряд значительных преимуществ:

  1. Обладают высокой устойчивостью к помехам, практически нечувствительны к воздействию внешних электромагнитных полей, отсутствуют перекрестные помехи между отдельными оптическими волокнами, которые проложены в одном кабеле.
  2. Обеспечивают широкую полосу пропускания.
  3. Материалы и оборудование для ВОЛС значительно меньше и легче, чем оборудование для строительства традиционных сетей. Это существенно экономит время застройки и капитальные затраты.
  4. Обеспечена абсолютная электрическая заизолированность между входом в систему и выходом из нее. Нет необходимости в общем заземлении принимающего и передающего устройств. Ремонтно-восстановительные работы можно производить без отключения оборудования сети.
  5. ВОЛС, в следствие практически полного отсутствия коротких замыканий между компонентами, можно строить в районах пересечения с опасными зонами. При этом можно не опасаться возникновения замыканий, которые могут послужить причиной пожара в областях горючих или легковоспламеняющихся сред.
  6. Хотя для производства оптических световодов и применяется потенциально дорогой материал – чистое стекло с минимальным количеством примесей, в массовом производстве их стоимость снижается. Низкая стоимость материалов в дальнейшем перерастает в существенную экономию при застройке. К тому же, оптоволокно, в силу своего высокого качества и эргономичности, обеспечивает более грамотное и рациональное распределение экономических инвестиций в сеть.
  7. ВОЛС обеспечивает экономию редких и дорогостоящих материалов. Поскольку для изготовление кабелей ВОЛС не используются металлы, то возникает их существенная экономия. Запасы меди и свинца, которые применялись для изготовления традиционных кабелей, постепенно истощаются. Это приводит к еще большему их удорожанию. Линии ВОЛС лишены такого недостатка. Экономия металлов приводит в приоритете к сокращению их выработки. Это положительно сказывается на экологии.

© 2016 — 2018, wpadmincheg963. Все права защищены.

www.zaosi.com

Строительство волоконно-оптических линий связи (ВОЛС)

Волоконно-оптические линии связи или ВОЛС – способ передачи информации с высокой скоростью и практически без потерь на значительные расстояния, протяженностью сотни километров, в котором основным проводником данных служит оптическое волокно или диэлектрические волноводы. 

Компания «Энсис Технологии» располагает сертифицированными специалистами и самым современным оборудованием тяговыми машинами производства Tesmec (Италия), аппаратами для сварки оптических волокон Fujikura (Япония), оптическими рефлектометрами Anritsu и Yokogawa (Япония) для строительства магистральных оптических линий связи с высоким качеством и в короткие сроки.

Преимущества решения

  • Использование передовых автоматизированных методов прокладки кабелей ВОЛС
  • навивные технологии
  • подвес кабелей тяговыми машинами
  • пневмозадувка оптического кабеля в микротрубки
  • укладка кабелей в грунт кабелеукладчиком
  • использование установок горизонтально-направленного бурения
  • Выполнение работ на линиях ЛЭП от 10кВ до 500кВ самонесущим кабелем и оптоволокном, встроенным в грозотрос
  • Осуществление сложных переходов по ЛЭП через реки шириной до 2х километров
  • Выполнение монтажа кабелей в кабельной канализации и в открытом грунте кабелеукладчиком и установками горизонтально-направленного бурения для прохода под реками, автомобильными и железными дорогами
  • Технический надзор
  • Прямые контакты с заводами-изготовителями кабелей ВОЛС и арматуры позволяют сохранять низкую стоимость строительства
  • Высокая степень готовности компании «Энсис Технологии» позволяет проводить строительство в сжатые сроки

Структура Решения

Строительство ВОЛС состоит из 7-ми этапов:

  • Предпроектное обследование трасс и помещений
  • Разработка проектной документации ВОЛС
  • Поставка оптического кабеля и компонентов для строительства ВОЛС
  • Монтаж оптического кабеля
  • Сварка волокон оптического кабеля
  • Тестирование компонентов ВОЛС
  • Паспортизация и изготовление исполнительной документации в соответствии с действующими нормами и стандартами ГОСТ

www.ensyst.ru

Волоконно-оптические линии связи (ВОЛС) — Строим сеть предприятия.


Оптоволоконный (он же волоконно-оптический) кабель – это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент – это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.



Рис. 1. Структура оптоволоконного кабеля

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля (рис. 1.). Только вместо центрального медного провода здесь используется тонкое (диаметром около 1 – 10 мкм) стекловолокно, а вместо внутренней изоляции – стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае речь идет о режиме так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется. Однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации. Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как при этом нарушается целостность кабеля. Теоретически возможная полоса пропускания такого кабеля достигает величины 1012 Гц, то есть 1000 ГГц, что несравнимо выше, чем у электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и сейчас примерно равна стоимости тонкого коаксиального кабеля.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет от 5 до 20 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты передаваемого сигнала затухание увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущества перед электрическим кабелем неоспоримы, у него просто нет конкурентов.



Волоконно-оптические линии связи (ВОЛС) позволяют передавать аналоговые и цифровые сигналы на дальние расстояния, в некоторых случаях – на десятки километров. Они также используются на малых, более «управляемых» расстояниях, например, внутри зданий. Примеры решений по построению СКС (структурированных кабельных систем) для построения сети предприятия находятся здесь: Строим сеть предприятия: Схема построения СКС — Оптика по горизонтали. , Строим сеть предприятия: Схема построения СКС — Централизованная оптическая кабельная система. , Строим сеть предприятия: Схема построения СКС — Зоновая оптическая кабельная система.

Преимущества оптики хорошо известны: это иммунитет к шумам и помехам, малый диаметр кабелей при огромной пропускной способности, устойчивость к взлому и перехвату информации, отсутствие нужды в ретрансляторах и усилителях и т.д.
Когда-то были проблемы с оконечной заделкой оптических линий, но сегодня они в основном решены, так что работать с этой технологией стало гораздо проще. Есть, однако, ряд вопросов, которые надо рассматривать исключительно в контексте областей применения. Как и в случае с передачей по «меди» или радиоканалу, качество волоконно-оптической связи зависит от того, насколько хорошо согласованы выходной сигнал передатчика и входной каскад приемника. Некорректная спецификация мощности сигнала приводит к увеличению коэффициента битовых ошибок при передаче; мощность слишком большая — и усилитель приемника «перенасыщается», слишком малая — и возникает проблема с шумами, поскольку они начинают мешает полезному сигналу. Вот два наиболее критичных параметра ВОЛС: выходная мощность передатчика и потери при передаче — затухания в оптическом кабеле, который соединяет передатчик и приемник.

Существуют два различных типа оптоволоконного кабеля:

* многомодовый или мультимодовый кабель, более дешевый, но менее качественный;
* одномодовый кабель, более дорогой, но имеет лучшие характеристики по сравнению с первым.

Тип кабеля определят количество режимов распространения или «путей», по которым свет проходит внутри кабеля.

 

Рис.2 Различия в физических параметрах одномодового и многомодовых оптических кабелей.

Многомодовый кабель, наиболее часто используемый в небольших промышленных, бытовых и коммерческих проектах, имеет самый высокий коэффициент ослабления и работает только на коротких расстояниях. Более старый тип кабеля, 62,5/125 (эти цифры характеризуют внутренний/ внешний диаметры световода в мкм), часто называемый «OM1», имеет ограниченную пропускную способность и используется для передачи данных со скоростью до 200 Мбит/с.
Недавно стали применять кабели 50/125 «OM2» и «OM3», предлагающие скорости 1Гбит/с на расстояниях до 500 м и 10 Гбит/с на до 300 м.

Одномодовый кабель используется в высокоскоростных соединениях (выше 10 Гбит/с) или на длинных дистанциях (до 30 км). Для передачи аудио и видео наиболее целесообразным является применение кабелей «OM2».
Вице-президент европейского отделения компании Extron по маркетингу Райнер Штайль отмечает, что оптоволоконные линии стали более доступными, их чаще применяют для организации сети внутри зданий — это ведет к росту применения АВ-систем на основе оптических технологий. Штайль говорит: «В плане интеграции ВОЛС уже сегодня обладают несколькими ключевыми преимуществами.
По сравнению с аналогичной медно-кабельной инфраструктурой оптика позволяет использовать одновременно и аналоговые, и цифровые видеосигналы, обеспечивая единое системное решение для работы с существующими, а также с перспективными видеоформатами.
Кроме того, т.к. оптика предлагает очень высокую пропускную способность, тот же кабель будет работать с большими разрешениями и в будущем. ВОЛС легко адаптируется к новым стандартам и форматам, появляющимся в процессе развития АВ-технологий».


Рис.3.Распространение светового луча в одномодовом и многомодовом оптических волноводах.

Другим признанным экспертом в этой области является Джим Хейз, президент Американской Волоконно-Оптической Ассоциации, созданной в 1995 году, способствующей росту профессионализма в области волоконной оптики и, между прочим, насчитывающей в своих рядах более 27000 квалифицированных специалистов по установке и внедрению оптических систем. Он говорит о росте популярности ВОЛС следующее: «Выгода – в быстроте инсталляции и дешевизне комплектующих. Растет применение оптики в сфере телекоммуникаций, особенно в системах Fiber-To-The-Home* (FTTH) с поддержкой беспроводного доступа, а также в сфере безопасности (камеры наблюдения).
Похоже, что сегмент FTTH растет быстрее других рынков во всех развитых странах. Здесь, в США, на оптике построены сети управления дорожным движением, муниципальных служб (администрация, пожарные, полиция), учебных заведений (школы, библиотеки).
Растет количество пользователей Интернет — и у нас быстро строятся новые центры обработки данных (ЦОД), для взаимосвязи которых используется оптоволокно. Ведь при передаче сигналов со скоростью 10 Гбит/с затраты аналогичны «медным» линиям, но оптика потребляет значительно меньше энергии. Долгие годы приверженцы волокна и меди «бились» друг с другом за приоритет в корпоративных сетях. Зря потраченное время!
Сегодня связь по WiFi стала настолько хорошей, что пользователи нетбуков, ноутбуков и iPhon’ов отдали предпочтение мобильности. И теперь в корпоративных локальных сетях оптику используют для коммутации с точками беспроводного доступа».
Действительно, областей применения оптики становится все больше, в основном, из-за указанных выше преимуществ перед медью.
Оптика проникла во все ключевые направления — системы наблюдения, диспетчерские и ситуационные центры, на военные и медицинские объекты, в зоны с экстремальными условиями эксплуатации. Снижение стоимости оборудования позволило использовать оптические технологии в традиционно «медных» областях – в конференц-залах и на стадионах, в розничной торговле и на транспортных узлах.
Райнер Штайль из Extron комментирует: «Волоконно-оптическое оборудование широко используется в медицинских учреждениях, например, для коммутации локальных видеосигналов в операционных. Оптические сигналы не имеют никакого отношения к электричеству, что идеально в плане обеспечения безопасности пациентов. ВОЛС прекрасно подходят и для медицинских учебных заведений, где необходимо распределять видеосигналы из нескольких операционных в несколько аудиторий, чтобы студенты могли наблюдать за ходом операции «вживую».
Волоконно-оптическим технологиям отдают предпочтение и военные, так как передаваемые данные трудно или даже невозможно «считать» извне.
ВОЛС обеспечивают высокую степень защиты конфиденциальной информации, позволяют передавать несжатые данные типа графики с высоким разрешением и видео с точностью до пикселя.
Возможность передачи на дальние расстояния делает оптику идеально подходящей для систем Digital Signage в крупных торговых центрах, где длина кабельных линий может достигать нескольких километров. Если для витой пары расстояние ограничено 450 метрами, то для оптики и 30 км не предел».
Что касается использования оптоволокна в АудиоВизуальной индустрии, то прогрессу здесь способствуют два основных фактора. Во-первых, это интенсивное развитие IP-основанных систем передачи аудио- и видео, которые опираются на сети с высокой пропускной способностью — для них ВОЛС подходят идеально.
Во-вторых, повсеместное требование передавать видео HD и компьютерные изображения HR на расстояния большие, чем 15 метров — а это предел для передачи HDMI по меди.
Есть случаи, когда видеосигнал просто невозможно «раздать» по медному кабелю и необходимо применить оптоволокно — такие ситуации стимулируют разработку новой продукции. Бьёнг Хо Пак, вице-президент по маркетингу компании Opticis, поясняет: «Для полосы данных UXGA, 60 Гц, и 24-битового цвета требуется общая скорость 5 Гбит/с, или 1,65 Гбит/с на каждый цветовой канал. HDTV имеет несколько меньшую пропускную способность. Производители «подталкивают» рынок, но и рынок одновременно «подталкивает» игроков использовать изображения более высокого качества. Есть отдельные области применения, где требуются дисплеи, способные отображать 3-5 млн пикселей или 30– 36-битовую глубину цвета. В свою очередь, для этого потребуется скорость передачи около 10 Гбит/с».
Сегодня многие производители коммутационного оборудования предлагают версии видео-удлинителей (экстендеров) для работы с оптическими линиями. ATEN International, TRENDnet, Rextron, Gefen и другие выпускают различные модели для целого ряда видео- и компьютерных форматов.
При этом служебные данные — HDCP** и EDID*** — могут передаваться с помощью дополнительной оптический линии, а в некоторых случаях — по отдельному медному кабелю, связывающему передатчик и приемник.
В результате того, что формат HD стал стандартом для рынка вещания, на других рынках — инсталляционном, например — тоже стали применять защиту от несанкционированного копирования контента в форматах DVI и HDMI, — говорит Джим Джачетта, старший вице-президент по разработкам компании Multidyne. — С помощью выпускаемого нашей компании устройства HDMI-ONE пользователи могут отправить видеосигнал с DVD- или Blu-Ray плеера на монитор или дисплей, расположенный на расстоянии до 1000 метров. Ранее ни одно устройство, работающее с многомодовыми линиями, не поддерживало систему защиты от копирования HDCP».

Те, кто работает с ВОЛС, не должны забывать и о специфических инсталляционных проблемах – концевой заделке кабелей. В этом плане многие производители выпускают как собственно разъемы, так и монтажные наборы, включающие в себя специализированный инструмент, а также химические препараты.
Между тем, любой элемент ВОЛС, будь то удлинитель, разъем или место состыковки кабелей, должен с помощью оптического измерителя быть проверен на предмет ослабления сигнала – это необходимо для оценки общего бюджета мощности (power budget, основной расчётный показатель ВОЛС). Естественно, собрать разъемы волоконных кабелей можно и вручную, «на коленке», но действительно высокое качество и надежность гарантируется только при использовании готовых, произведенных на заводе «разделанных» кабелей, подвергнутых тщательному многоступенчатому тестированию.
Несмотря на огромную пропускную способность ВОЛС, у многих всё еще остаётся желание «впихнуть» в один кабель побольше информации.
Здесь развитие идет в двух направлениях — спектрального уплотнения (optical WDM), когда в один световод направляется несколько световых лучей с разными длинами волн, а другое – сериализация / десериализация данных (англ. SerDes), когда параллельный код преобразуется в последовательный и обратно.
При этом оборудование для спектрального уплотнения стоит дорого из-за сложного проектирования и применения миниатюрных оптических компонентов, но не увеличивает скорость передачи. Применяемые в оборудовании SerDes высокоскоростные логические устройства также увеличивают расходную часть проекта.
Кроме того, сегодня выпускается оборудование, позволяющее мультиплексировать и демультиплексировать из общего светового потока управляющие данные – USB или RS232/485. При этом световые потоки можно отправлять по одному кабелю в противоположных направлениях, хотя цена выполняющих эти «трюки» приборов обычно превышает стоимость дополнительного световода для возврата данных.

Оптика открывает широкие возможности там, где требуются высокоскоростные коммуникации с высокой пропускной способностью. Это хорошо себя зарекомендовавшая, понятная и удобная технология. В АудиоВизуальной области она открывает новые перспективы и предоставляет решения, недоступные с помощью других методов. По крайней мере, без значительных рабочих усилий и денежных затрат.

В зависимости от основной области применения волоконно-оптические кабели подразделяются на два основных вида:


Кабель внутренней прокладки :
При монтаже ВОЛС в закрытых помещениях обычно применяется Волоконно-оптический кабель с плотным буфером (для защиты от грызунов). Используется для построения СКС в качестве магистрального или горизонтального кабеля. Поддерживает передачу данных на короткие и средние расстояния. Идеально подходит для горизонтального каблирования.

Кабель внешней прокладки :

Волоконно-оптический кабель с плотным буфером, бронированный стальной лентой, влагостойкий. Применяется для внешней прокладки при создании подсистемы внешних магистралей и связывают между собой отдельные здания. Может прокладываться в кабельные каналы. Подходит для непосредственной укладки в грунт.

Внешний самонесущий оптоволоконный кабель :
Волоконно-оптический кабель самонесущий, со стальным тросиком. Применяется для внешннй прокладки на большие расстояния в рамках телефонных сетей. Поддерживает передачу сигналов кабельного телевидения, а также передачу данных. Подходит для прокладки в кабельной канализации и воздушной прокладки.

Преимущества ВОЛС :

  • Передача информации по ВОЛС имеет целый ряд достоинств перед передачей по медному кабелю. Стремительное внедрение в информационные сети Волс является следствием преимуществ, вытекающих из особенностей распространения сигнала в оптическом волокне.
  • Широкая полоса пропускания — обусловлена чрезвычайно высокой частотой несущей 1014Гц. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько терабит в секунду. Большая полоса пропускания — это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации.
  • Малое затухание светового сигнала в волокне. Выпускаемое в настоящее время отечественными и зарубежными производителями промышленное оптическое волокно имеет затухание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более.
  • Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой ибыточностью кода.
  • Высокая помехозащищенность. Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение (линии электропередачи, электродвигательные установки и т.д.). В многоволоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей многопарным медным кабелям.
  • Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. Например, 900-парный телефонный кабель диаметром 7,5 см, может быть заменен одним волокном с диаметром 0,1 см. Если волокно “одеть” в множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля.
  • Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оптической линии связи, используя свойства высокой чувствительности волокна, могут мгновенно отключить “взламываемый” канал связи и подать сигнал тревоги. Сенсорные системы, использующие интерференционные эффекты распространяемых световых сигналов (как по разным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колебаниям, к небольшим перепадам давления. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных.
  • Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических “земельных” петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.
  • Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.
  • Экономичность ВОЛС. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.
  • Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.
  • Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.

Однако оптоволоконный кабель имеет и некоторые недостатки:

  • Самый главный из них – высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Следует помнить, что некачественная установка разъема резко снижает допустимую длину кабеля, определяемую затуханием.
  • Также надо помнить, что использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.
  • Оптоволоконные кабели допускают разветвление сигналов (для этого производятся специальные пассивные разветвители (couplers) на 2—8 каналов), но, как правило, их используют для передачи данных только в одном направлении между одним передатчиком и одним приемником. Ведь любое разветвление неизбежно сильно ослабляет световой сигнал, и если разветвлений будет много, то свет может просто не дойти до конца сети. Кроме того, в разветвителе есть и внутренние потери, так что суммарная мощность сигнала на выходе меньше входной мощности.
  • Оптоволоконный кабель менее прочен и гибок, чем электрический. Типичная величина допустимого радиуса изгиба составляет около 10 – 20 см, при меньших радиусах изгиба центральное волокно может сломаться. Плохо переносит кабель и механическое растяжение, а также раздавливающие воздействия.
  • Чувствителен оптоволоконный кабель и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Резкие перепады температуры также негативно сказываются на нем, стекловолокно может треснуть.
  • Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытеснит электрические кабели или, во всяком случае, сильно потеснит их.

Перспективы развития ВОЛС:

  • В связи с ростом требований, предъявляемых новыми сетевыми приложениями, становится все более актуальным применение оптоволоконных технологий в структурированных кабельных системах. Каковы же преимущества и особенности использования оптических технологий в горизонтальной кабельной подсистеме, а также на рабочих местах пользователей?
  • Проанализировав изменения сетевых технологий за последние 5 лет, легко заметить, что медные стандарты СКС отставали от гонки «сетевых вооружений». Не успев инсталлировать СКС третьей категории, предприятиям приходилось переходить на пятую, сейчас уже и на шестую, а не за горами использование седьмой категории.
  • Очевидно, развитие сетевых технологий не остановится на достигнутом: гигабит на рабочее место вскоре станет стандартом де-факто, а впоследствии и де-юре, и для ЛВС (локальных вычислительных сетей) крупного или даже среднего предприятия 10 Гбит/с Etnernet не будет редкостью.
  • Поэтому очень важно использовать такую кабельную систему, которая позволила бы легко справляться с возрастающими скоростями сетевых приложений на протяжении как минимум 10 лет — именно такой минимальный срок службы СКС определен международными стандартами.
  • Более того, при изменении стандартов на протоколы ЛВС необходимо избегать повторной прокладки новых кабелей, которая раньше была причиной значительных расходов на эксплуатацию СКС и просто не допустима в будущем.
  • Только одна среда передачи в СКС удовлетворяет данным требованиям — оптика. Оптические кабели используются в телекоммуникационных сетях уже более 25 лет, в последнее время они также находят широкое применение в кабельном телевидении и ЛВС.
  • В ЛВС они в основном используются для построения магистральных кабельных каналов между зданиями и в самих зданиях, обеспечивая при этом высокую скорость передачи данных между сегментами этих сетей. Однако развитие современных сетевых технологий актуализирует использование оптоволокна как основной среды для подключения непосредственно пользователей.

Новые стандарты и технологии ВОЛС:

За последние годы на рынке появилось несколько технологий и продуктов, позволяющих значительно облегчить и удешевить использование оптоволокна в горизонтальной кабельной системе и подключение его к рабочим местам пользователей.

Среди этих новых решений прежде всего хочется выделить оптические разъемы с малым форм-фактором — SFFC (small-form-factor connectors), плоскостные лазерные диоды с вертикальным резонатором — VCSEL (vertical cavity surface-emitting lasers) и оптические многомодовые волокна нового поколения.

Следует отметить, что недавно утвержденный тип многомодового оптического волокна ОМ-3 обладает полосой пропускания более 2000 МГц/км на длине лазерного излучения 850 нм. Данный тип волокна обеспечивает последовательную передачу потоков данных протокола 10 Gigabit Ethernet на расстояние 300 м. Использование новых типов многомодового оптоволокна и 850-нанометровых VCSEL-лазеров обеспечивает наименьшую стоимость реализации 10 Gigabit Ethernet-решений.

Разработка новых стандартов оптоволоконных разъемов позволила сделать оптоволоконные системы серьезным конкурентом медным решениям. Традиционно оптоволоконные системы требовали в два раза большего числа разъемов и коммутационных шнуров, чем медные — в телекоммуникационных пунктах требовалась гораздо большая площадь для размещения оптического оборудования, как пассивного, так и активного.

Оптические разъемы с малым форм-фактором, представленные недавно целым рядом производителей, обеспечивают в два раза большую плотность портов, чем предыдущие решения, поскольку каждый такой разъем содержит в себе сразу два оптических волокна, а не одно, как ранее.

При этом уменьшаются размеры и оптических пассивных элементов — кроссов и т.д., и активного сетевого оборудования, что позволяет снизить в четыре раза расходы на установку (по сравнению с традиционными оптическими решениями).

Следует отметить, что американские органы стандартизации EIA и TIA в 1998 году приняли решение не регламентировать использование какого-либо определенного типа оптических разъемов с малым форм-фактором, что привело к появлению на рынке сразу шести типов конкурирующих решений в данной области: MT-RJ, LC, VF-45, Opti-Jack, LX.5 и SCDC. Также сегодня есть и новые разработки.

Наиболее популярным миниатюрным разъемом является разъем типа MT-RJ, который имеет один полимерный наконечник с двумя оптическими волокнами внутри. Его конструкция была спроектирована консорциумом компаний во главе с AMP Netconnect на основе разработанного в Японии многоволоконного разъема MT. AMP Netconnect на сегодня представила уже более 30 лицензий на производство данного типа разъема MT-RJ.

Своему успеху разъем MT-RJ во многом обязан внешней конструкции, которая схожа с конструкцией 8-контактного модульного медного разъема RJ-45. За последнее время характеристики разъема MT-RJ заметно улучшились — AMP Netconnect предлагает разъемы MT-RJ с ключами, предотвращающими ошибочное или несанкционированное подключение к кабельной системе. Кроме того, ряд компаний разрабатывает одномодовые варианты разъема MT-RJ.

Достаточно высоким спросом на рынке оптических кабельных решений пользуются разъемы LC компании Avaya (http://www.avaya.com). Конструкция этого разъема основана на использовании керамического наконечника с уменьшенным до 1,25 мм диаметром и пластмассового корпуса с внешней защелкой рычажного типа для фиксации в гнезде соединительной розетки.

Разъем выпускается как в симплексном, так и в дуплексном варианте. Основным преимуществом разъема LC являются низкие средние потери и их среднеквадратичное отклонение, которое составляет всего 0,1 дБ. Такое значение обеспечивает стабильную работу кабельной системы в целом. Для установки вилки LC применяются стандартная процедура вклеивания на эпоксидной смо ле и полировки. Сегодня разъемы нашли свое применение у производителей 10 Гбит/с-трансиверов.

Компания Corning Cable Systems (http://www.corning.com/cablesystems) производит одновременно как разъемы типа LC, так и MT-RJ. По ее мнению, индустрия СКС сделала свой выбор в пользу разъемов MT-RJ и LC. Недавно компания выпустила первый одномодовый разъем MT-RJ и UniCam-версии разъемов MT-RJ и LC, особенностью которых является малое время монтажа. При этом для установки разъемов типа UniCam нет необходимости использовать эпоксидный клей и поли

www.insotel.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о